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Abstract—Theoretical and experimental methodology
are presented for accurately determining the effective radii
of unfocused, circular plane piston transducers as well as us-
ing tone burst hydrophone measurements to verify steady-
state theoretical calculations. Experiments using two spe-
cially fabricated unfocused, composite piezoelectric trans-
ducers demonstrate the validity of the methodology. For
spherically focused circular transducers, a simple model is
used to estimate the transient diffraction encountered in
co-axial flat hydrophone measurements.

I. INTRODUCTION

EVERAL BASIC OBJECTIVES in ultrasound physics are:

the accurate measurement of transducer acoustic pa-
rameters such as the unfocused, circular plane piston “ef-
fective” radius, and the accurate experimental verification
of steady-state theoretical calculations. Both require mea-
surements of “point” pressure. However, the coherence of
the transmitted radiation, the finite hydrophone diameter,
and the experimental geometry lead to diffraction effects
which cause experimental measurements to deviate from
ideal “point” values.

In this work we show how to use hydrophone measure-
ments, with suitable corrections, to accomplish the above
two goals. In particular: a methodology is demonstrated
for correcting axial hydrophone measurements of pressure
maxima and minima to axial “point” pressure maxima
and minima for calculating the flat, circular plane pis-
ton effective radius; and the proper manner of performing
tone burst experimental measurements for verification of
steady-state theoretical calculations for unfocused trans-
ducers is demonstrated. And a simple geometric model is
presented for estimating the transient diffraction duration
for hydrophone measurements of spherically focused circu-
lar piston transducers.

II. UNFOCUSED CIRCULAR PISTON

Diffraction effects due to finite transducer and hy-
drophone sizes and measurement geometry must be prop-
erly taken into account. To do this, a diffraction correction
D is typically used [1]. The diffraction correction D is the
ratio of the spatially averaged acoustic pressure received at
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Fig. 1. Co-Axial transducer geometry with transmitter of radius a
and receiver of radius b. The shortest acoustic path between the two
transducers is between their centers, and the longest acoustic path
is from opposite points on their edges as shown.

the hydrophone front face from the baffled circular trans-
mitter to a plane wave with the same initial pressure ema-
nating from the full infinite plane of the transmitter front
face. Because the denominator of this fraction is essentially
a constant, D is proportional to the hydrophone received
signal.

Fig. 1 illustrates the typical co-axial measurement ge-
ometry for a flat, circular piston transmitting transducer
and a flat, circular piston receiving hydrophone with radii
a and b, respectively. The D is a function of the positions,
orientations, shapes, and sizes of the front face of both
transducers.

Approximate and exact expressions for D exist that
can be used to calculate the effect of hydrophone radius
on measurements of the axial pressure of unfocused, cir-
cular piston transducers. An approximate expression was
derived by Khimunin [2]:

_ Wl ta ( kab >
kab Vz? +a?
X exp {—ik (\/ 224 a? — z)] (1)

which is valid under the conditions b/a < 1, ab/z? < 1
and a?/\ < 22/b?, where z is the axial distance from the
transducer front face and A is the acoustic wavelength in
the propagation medium.

An exact theoretical expression for D was derived by
Beissner [3] with v = b/a.

D=1
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For v < 1:
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For v =1, (2) and (3) are equal and give results identical
with other calculations [1] for this specific case.

The approximate formula demonstrates very good
agreement with the v < 1 exact expression in the range of
very small ~. It is faster in numerical computations, but
the exact formulae are more accurate in all circumstances.
Due to the availability and ease of use of numerical inte-
gration software for PCs, the exact formulae will be used
here.

Comparison of calculations of D using (2) and (3) for
reciprocal values of v (exchanging the transmitter and re-
ceiver functions in Fig. 1) reveals a pseudo-reciprocity. The
relative variation of D with z is identical, but the absolute
magnitude of D differs. When v — 0, the spatial form of
the axial point pressure of a flat, unfocused circular piston
[4] is found with D varying between 0 and 2 [Fig. 2 (a)].
When v — o0, the same spatial variation of D is found,
but the magnitude of D goes to zero.

The cause of this observed pseudo-reciprocity is the
form of the definition of D. The spatially averaged pres-
sure caused by the infinite plane wave in the denominator
will be constant and independent of . For small ~, the
receiving transducer is getting smaller, which means that
the spatially averaged value of the pressure received from
the baffled circular piston will tend toward the pressure at
a point on the transmitter axis. For large ~, the transmit-
ter is getting smaller, which means that its energy output
(for constant output pressure per the definition of D) is
decreasing. For very large - this reduces the average pres-
sure on the front face of the receiving transducer to zero.

In the practical situation of predicting experimental re-
sults, D is noted to be proportional to the received sig-
nal magnitude. Because the received signal magnitude de-
pends upon circuit electrical impedances, its absolute value
is not relevant. When the calculated D and the experimen-
tal results are both separately normalized to unity, they
should be identical. The normalized D values for recipro-
cal s, then, will demonstrate reciprocity in magnitude as
well as spatial variation.

The unfocused, circular plane piston effective radius,
Geff, 1S a parameter which takes into account sensitivity

For v > 1:
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Fig. 2. Calculated axial pressure vs. z'/2 for a 1 cm radius trans-
ducer with several hydrophones: (a) 0.02 mm diameter (v = 0.001),
(b) 0.5 mm diameter (v = 0.025), and (c) 1 mm diameter (v = 0.050)
in water at 20°C. The square root of z was plotted to spread out the
higher order extrema.

and phase variations over the transducer face and is used
to match simple cw theory to the actual transducer beam
pattern. It can be determined accurately from transducer
axial point pressure extrema (maxima and minima) posi-
tion measurements, z,,, using the known relation [2]:

32\ 1/2

Qoff = <zmm)\ + mQZ> (4)
where m = 2n — 1 for maxima, m = 2n for minima, n = 1,
2, 3 ... and aeg is calculated for each z,,. (Note that a
slight error in the formulas for m given in [2] has been
corrected here.) The average of all calculated aog values is
taken as the effective radius. The more extrema present in
the measurement results, the more accurate the resulting
average aeg value.

In order to observe the effect of the finite hydrophone
diameter on the effective radius measurement, (2) is used.
Fig. 2 shows the unfocused plane piston axial pressure
measurement results for a 1 cm radius transducer and sev-
eral finite dimension hydrophones. A large hydrophone di-
ameter causes signal amplitude distortion and the phase
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Fig. 3. Fractional shift of first six axial pressure extrema of an un-
focused, circular piston measured with a circular hydrophone as a
function of v. The fractional shift is defined with respect to the un-
shifted values of (1). The odd m maxima demonstrate a larger change
in lower order maxima at large 7, and the even m minima demon-
strate a larger change in higher order maxima at large ~.

reversal of some extrema (maxima become minima and
visa versa). The extrema at the shorter z values (higher
order extrema, large m) are affected the most when ~ in-
creases. The lower order extrema (at larger z values) are
least affected by large hydrophone diameter. However, any
changes in z,, will affect the accuracy of the calculated av-
erage aes value using (4), so a pertinent question is, what
exactly is the extremum axial position shift as a function
of hydrophone diameter?

The calculation of the shift of the steady-state maxi-
mum or minimum axial positions with hydrophone diam-
eter (or v) is discussed in the Appendix and presented in
Fig. 3. The lower order maxima have the largest shifts with
increasing v, and the higher order minima have the larger
shifts with increasing ~.

At low values of v (small hydrophones) only the lowest
order maximum (m = 1) has an appreciable shift (~1%)
in axial position from the point pressure lowest order max-
imum. This is shown in the Appendix to be due to water
attenuation and the broadness of this peak.

III. METHODS AND MATERIALS

Two unfocused, composite piezoelectric transducers of
physical radii 0.938 and 1.25 cm were specially fabricated
by Echo Ultrasound for this project. The transducers were
suspended in a water tank (=20°C) mounted on a five
axis (three translational, two rotational) computer con-
trolled precision positioning system (Daedal Inc., Harri-
son City, PA) at UTUC, which has translational accuracy
of about 2 pm.

Tone burst transmission was used to simulate steady-
state (cw) conditions to avoid the deleterious effects of
standing waves and multiple reflections in the tank. A
2.25-MHz, 15-cycle driving tone burst was generated by
a Hewlett Packard (Santa Clara, CA) 8116A signal gener-
ator and amplified by an ENI 2100L 50 dB amplifier. The
received signal was preamplified by a TEK 11A34 ampli-
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TABLE I
EFFECTIVE RADIUS RESULTS FROM THE MEASURED 2y, AT
2.25 MHz.
Gphys Zm Geff avg Qeff
cm m extremum cm cm cm
0.953 1 max 12.4  0.902
2 min 6.05 0.895
3 max 4.10 0.901
4 min 3.00 0.898
5 max 2.30 0.885 0.90
1.27 1 max 24.0 1.26
2 min 11.8 1.25
3 max 7.75 1.24 1.25

fier and displayed on a TEK 11401 digitizing oscilloscope
at 1 mm axial distance increments. The received signals
then were digitized and passed to a Tandy 4000 386 PC
for processing. The pulse intensity integral, PII [5], was
calculated over the entire received length of the tone burst
in order to remove random noise and obtain the received
pulse average intensity.

The axial acoustic pressure of each transducer was mea-
sured first using a Marconi 0.5 mm diameter bilaminar hy-
drophone. Then the two transducers were used in a pitch-
catch measurement. Nonlinear propagation effects were
avoided by maintaining the transmitter drive voltage low
enough so that the second harmonic of the received signal
was at least 30 dB below the fundamental.

IV. RESULTS

Figs. 4(a) and (b) demonstrate the 0.5-mm-diameter
hydrophone axial pulse average intensities at 2.25 MHz for
the two Echo Ultrasound transducers. Only a limited num-
ber of low order extrema are present in these results. The
larger transducer (1.25 cm physical radius) has the lower
number of extrema and, potentially, the lower accuracy in
the measured average a.g. The m = 1 data was corrected
back to point pressure using the fractional shift calculated
for a 0.5-mm-diameter hydrophone measuring the extrema
of a 0.90- or 1.25-cm-radius transducer. Table I presents
the estimated effective radii, acg, for the measured extrema
and the calculated average effective radii for the two trans-
ducers at 2.25 MHz.

Fig. 5 demonstrates the normalized result of the pitch-
catch measurements using the two Echo Ultrasound trans-
ducers along with the normalized theoretical prediction of
D corrected for water attenuation. The two normalized ex-
perimental measurements (with reciprocal 7 values) do ex-
hibit acoustic reciprocity within experimental uncertainty.
At small z the normalized theoretical and experimental
results do not agree. At large z there appears to be agree-
ment between the two with a systematic error.

V. DISCUSSION

Single crystal, unfocused plane piston transducers can
have contributions from radial modes [6] that will lead
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Fig. 4. Measured axial pulse average intensity at 2.25 MHaz:
(a) 1.27 cm radius transducer, and (b) 0.95 cm radius transducer.

to disagreement between measurement and theory. How-
ever, this will not occur with the composite piezoelectric
transducers used here. The lack of agreement between ex-
periment and theory for the two transducer pitch-catch
measurement is due to the fact that the pulse intensity in-
tegral, which was used to analyze the received tone burst
signals, is defined for short pulse radiation and the the-
ory assumes cw conditions. Due to geometric propagation
time delays, not all of the received tone burst signal is
effectively a cw steady-state signal.

The received signal is “steady-state” when all portions
of the receive transducer front surface in Fig. 1 are receiv-
ing signals from all portions of the transmit transducer
front surface. At the leading and trailing edges of the re-
ceived tone burst signal this condition is not satisfied as
shown in Fig. 6. When the cophasal transmitter emits a
tone burst, the face center of the receive transducer is the
first region to receive a signal from the transmitter face
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Fig. 5. Comparison of normalized theoretical and experimental re-
sults for pitch-catch co-axial measurements using the two Echo Ultra-
sound transducers. The two experimental curves obtained by switch-
ing transmitter and receiver functions exhibit acoustic reciprocity.
Only one theoretical curve is shown because the normalized theoret-
ical curves are identical.
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Fig. 6. Received tone burst signal demonstrating regions of transient
diffraction at its leading edge (between points 1 and 2) and at its
trailing edge (between points 3 and 4). The peak signal in the tran-
sient diffraction region is shown larger than the peak signal received
in the steady-state region to demonstrate this improbable but pos-
sible circumstance. If the AIUM/NEMA pulse intensity integral is
evaluated over an integral number of half cycles inside of the central
steady-state diffraction region of the received tone burst signal, the
cw intensity of the tone burst will be obtained.

center (point 1) and the receive face edge is the last re-
gion to receive a signal from the opposite transmit face
edge (point 2). The time interval between points 1 and 2
is called here the transient diffraction duration and was de-
scribed by Lord [7]. At the trailing edge of the received tone
burst, a similar region of transient diffraction occurs be-
tween the points 3 (when the receive face center no longer
receives signal from the transmit face center) and 4 (when
the receive face edge no longer receives signal from the op-
posite transmit face edge). Between points 2 and 3 there
exists a region of steady-state diffraction in which the sig-
nal amplitude is predictable from steady-state theory. All
measurements must be made in this “steady-state” diffrac-
tion region to obtain “cw signals.”

The transient diffraction duration d(z) is equal to the
time difference between the face center signals being re-
ceived and the opposing edge signals being received and is
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Fig. 7. Calculated steady-state fraction of the received tone burst
length using (5) for the 15 cycle transmitted tone burst. Note that,
even in the case of small diameter hydrophone reception, there is
substantial transient diffraction at short distances from the trans-
mitter.

given by:

5(2) = (a+b)2+22—=z 5)

C

where ¢ is the acoustic speed of the propagation medium.
The transducer radii used in (5) must be their actual phys-
ical radii and not their effective radii. This is especially im-
portant when using membrane hydrophones whose effec-
tive radii are known to vary with frequency and angle [8].

The transmitted tone burst contains € cycles with a to-
tal length 7 = ¢/ f, where f is the transmit frequency. The
total length of the receive tone burst is 7 + 6(z) (Fig. 6)
and the length of the steady-state diffraction region is
7 — 0(2). The fraction of the received tone burst length
that is in steady-state diffraction is (7 — §(z))/(7 + 6(2)).
Fig. 7 demonstrates that, for the 1.25-cm-radius trans-
ducer transmitting to the 0.90-cm-radius transducer, the
steady-state region of the received tone burst is substan-
tial only at separations greater than 20 cm. At separations
less than 5 cm, the experimental data were severely com-
promised (due to evaluation of the pulse intensity integral
over the total length of the received pulse) resulting in the
lack of agreement between experiment and theory. At sep-
arations less than 20 cm, the experimental data were mod-
erately compromised, resulting in a change of magnitude
of the short range signal that affected the normalization
and caused the systematic error seen in Fig. 5.

It is interesting to note from Fig. 7 that even when
the axial intensity of each transducer was measured using
the 0.5-mm-diameter hydrophone, at separations less than
5 cm, there is substantial transient diffraction. This ex-
plains the lack of high order extrema in Figs. 4(a) and (b),
which lowered the accuracy of the ag calculation. Accord-
ing to (5), the larger diameter receiving transducer mea-
surement has more transient diffraction and should exhibit
fewer extrema as demonstrated in Figs. 4(a) and (b).

When measuring the central “steady state” portion of
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Fig. 8. Cross-sectional geometry of the co-axial measurement of a
spherically focused transmitter by a flat receiver. The four extreme
distances L; from the transmitter to the receiver are shown.

the received tone burst, the pulse intensity integral is not
a meaningful parameter. The maximum temporal average
intensity should be used instead for the measurement of
Ispra as specified in Section 5.4.18 of [5].

VI. FOCUSED CIRCULAR PISTON

Although theoretical expressions exist for the axial
point pressure of a spherically focused circular piston [9],
[10], no theory exists for the diffraction correction D for
co-axial hydrophone measurements of a spherically focused
circular piston. Thus, the effect of the receiver diameter
on the received spatially averaged pressure cannot be cal-
culated, at present. Although spatial-averaging correction
procedures have been worked out for some cases of interest
[11], it is possible to estimate the transient diffraction du-
ration using a simple geometric model to guide the analysis
of experimental results.

Fig. 8 shows a cross-section view of the co-axial mea-
surement geometry for a focused transmitter with a ra-
dius of curvature A. The focused transmitter has a cir-
cular aperture of radius a and the receiving flat circular
piston has a radius r (actual physical radius). The distance
notation of [9] is used with & given by [9]:

a’? + h? = 2Ah.

Solving this quadratic equation for h, the physical solution
obtained is:

h=A— /A2 _ a2 (6)

The four extreme distances in this measurement geome-
try are shown in Fig. 8. L;(z) is the axial distance between
the centers of the two transducers:

Li(z) = 2, (7)

Ls(z) is the distance from the center of the transmitter to
the edge of the receiver:

Lo(2) = V1?2 4 22, (8)

L3(z) is the shortest distance from the edge of the trans-
mitter to the edge of the receiver:

Ls(z) = V/(z = h)2 + (a —1)?, (9)
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and L4(z) is the longest distance from the edge of the
transmitter to the edge of the receiver:

Ly(2) = /(2 — h)2 + (a +1)2.

(10)

The calculation of the transient diffraction duration is
straightforward for the common situation of small diame-
ter hydrophones. Because L1 (z) and Ly(z) differ apprecia-
bly only when z is of order 7, La(z) 2 Ly(z). Throughout
the full range of z, L4(z) is always greater than Ls(z).
From Fig. 8 for small r, it is evident that for z much less
than A, L;(2) is shorter than either L3(z) or Ly4(2) and for
z much greater than A, Li(z) is longer than either L3(z)
or L4(z). Thus, there are three ranges of z to consider.
At small z the maximum extreme distance difference is
L4(z) — L1(2). At large z the maximum extreme distance
difference is L1(z) — L3(z). And there is an intermediate
range where the maximum extreme distance difference is
L4(Z) - Lg(z)

The transition distance z, between the first two ranges
is found by equating L4(z) — L1(2) and L4(z) — L3(z2),

(a —1)% — h?
2h ’

z[ = (11)

And the transition distance zg between the last two ranges
is found by equating L1 (z) — L3(z) and Ly(z) — L3(2),

(a+7)%— h?
-~ 7 . 12
= 2h (12)
Then, for the transient diffraction duration:
AL
() = 28, (13)
(&

where AL(z) = L4(z) — L1(2) when z < zp, AL(z) =
L4(z) — L3(z) when zp, < z < zy and AL(2) = L1(2) —
L3(z) when z > zg.

The form of h in (6) is useful when A and a are used
as transmitter focal parameters. It is also convenient to
use the transmitter focal length F' and f-number, fn, as
parameters. For the degree of accuracy needed in this com-
putation, F' may be set equal to A. Substituting the defi-
nition of the f-number:

F
into (6) results in
- [4fn? —1

When using these results to analyze received tone-burst
signals, it is necessary to know the transient diffraction
duration in cycles of the transmitted frequency. This is
obtained from (13) by dividing by the period of the fre-
quency to obtain:

5T (2) = f8(2) (16)
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Fig. 9. Transient diffraction duration in cycles for a 3.5 MHz focused
transmitter with a 10 cm radius of curvature and an f-number of
2 and its equivalent flat transducer, both measured by a 1.0 mm
hydrophone. The minimum value for the focused transducer is 0.55
cycles compared to 7 cycles at the same distance for the equivalent
flat transducer.
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Fig. 10. Transient diffraction duration in cycles for a 3.5 MHz focused
transmitter with a 10 cm radius of curvature and an f-number of
4 and its equivalent flat transducer, both measured by a 1.0 mm
hydrophone. The minimum value for the focused transducer is 0.26
cycles compared to 1.77 cycles at the same distance for the equivalent
flat transducer.

In commercial medical ultrasound equipment, focused
transducers typically are designed with a fn = 2 focus
for gray scale imaging and a weaker fn = 4 focus for
range-gated Doppler signal acquisition [12]. For a 1.0-mm-
diameter hydrophone co-axial measurement of a spheri-
cally focused circular 3.5-MHz-transducer with A = 10 cm,
Fig. 9 shows 07T'(z) when fn = 2 and Fig. 10 shows 67'(z)
when fn = 4. Also plotted in these figures is the transient
diffraction duration in cycles for the equivalent flat trans-
ducer [13], Lgat(z), obtained by using (5) instead of (13)
in (16). The transient diffraction duration is shorter for
the focused transducer than the equivalent flat transducer,
and this difference is greater the more strongly focused the
transducer as seen in Figs. 9 and 10.

The plots in Figs. 9 and 10 exhibit shorter transient
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Fig. 11. Transient diffraction duration in cycles vs transmitter focal
strength. The transmitter has a 10 cm radius of curvature and an
f-number 2, and the hydrophone has a 1.0 mm diameter. The strong
focus curve is for 3.5 MHz, the medium focus curve is for 1.0 MHz,
and the weak focus curve is for 0.3 MHz. See text for details.

diffraction durations at close to moderate distances when
the transducer is focused. At larger distances the equiv-
alent flat transducer has the shorter transient diffraction
duration. These distance variations in transient diffraction
duration must be taken into account when analyzing re-
ceived tone-burst signals for comparison to cw theoreti-
cal calculations. The transition distance where the focused
and equivalent flat transducer curves cross is obtained by
equating L1(z) — L3(z) with La.(2z) yielding the cubic
equation:

16h2% — (16a% 4 1612 4+ 4h?)22 + (16arh — 4h®)z

+16a*r* + h* —8arh®* =0 (17)
which can be solved using standard techniques [14]. The
root that represents this physical problem is the large pos-
itive root.

It is also instructive to see how 07'(z) varies with the de-
gree of transmitter focus. Focal strength has been defined
as [13] weak focusing, T/2 < A < oo; medium focusing,
T/2m < A < T/2; and strong focusing, A < T'/2m; where
T is the transition distance of the equivalent flat trans-
ducer, a?/\. Again using the approximation that the focal
distance F' is equal to A and the definition of the f-number,
for weak focusing the transmission frequency must be less
than 8fn2c/F, for strong focusing the transmission fre-
quency must be greater than 87 fn?c/F, and for medium
focusing the transmission frequency is between these lim-
its. Fig. 11 demonstrates 67'(z) for a 1.0-mm-diameter hy-
drophone co-axial measurement of a focused transducer
with A = 10 cm, fn = 2 and the frequencies 3.5 MHz
(strong focus), 1.0 MHz (medium focus), and 0.3 MHz
(weak focus). The stronger the focus, the larger the tran-
sient diffraction duration in cycles, d7'(z). Note that the
transient diffraction duration in seconds, §(z), is indepen-
dent of transmitter focal strength because it is independent
of frequency.
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VII. CONCLUSIONS

Geometric propagation time delays are known to cause
transient diffraction regions at the leading and trailing
edges of tone bursts. In any experiment designed to verify
steady state cw theory, these transient diffraction regions
must be avoided in the measurement.

When analyzing axial pressure data, the “effective”
radii of flat, circular piston transducers may be accurately
estimated using the diffraction correction D corrected for
axial distance shifts due to broad pressure peaks and water
attenuation.
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APPENDIX

Axial distance shifts (from “point” positions) of the
transmitting piston steady-state axial maxima or minima
positions with receiving hydrophone diameter may be ob-
tained by starting with the magnitude of the diffraction
correction D (which is proportional to the received peak
signal), adding a multiplicative exponential water atten-
uation term (with a/f? equal to 25.3 10717 sec?/cm at
20°C) [15], differentiating with respect to z and setting
the result equal to zero.

Because the goal is to plot the shift in extremum posi-
tion with -y, the approximate diffraction correction formula
is not appropriate. The more complicated exact formula
for v < 1 must be used. After some algebra, the relation

(cos(kz) — SR(k, 2)) - [-acos(kz) + aSR(k, 2)
— ksin(kz) — kSRD(k, z)| = (sin(kz) — SI(k, z))
-lasin(kz) — aSI(k, z) — kcos(kz) + kSID(k,z)] (Al)

is obtained where,

SR(k,Z)—Wi’yzl/\/ 1_7 +52)
D),
s [ (S5 )
X sin <ka\/§2 + (2)2> de,

2
1+WZ —’Y2+€2)

Y
- VEa + 22

X sin (lmy/{Q + (Z)2> d¢ an(dA4)

(A3)

SRD(k, z)
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SID(k,z) = — /
™y 2a2+z2
] TV

x cos | kay /&2 + (2)2 de.
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Using a numerical computer program (Mathcad, Math-
soft Corp., Cambridge, MA) the fractional shifts (with re-
spect to “point” extremum values [4]) of the first three
axial pressure maxima and minima were obtained and are
presented in Fig. 3.

In order to verify the y axis intercept values of Fig. 3,
where v = 0, the relationship for the axial pressure of
an unfocused circular piston radiator [4] was multiplied
by the exponential water attenuation term, differentiated
with respect to z and the result set equal to zero obtaining:

o ) ()

X oS [g (m - z)} . (A6)

The extremum values obtained with (A6) using the nu-
merical computer program were identical to those calcu-
lated from (A1) with v = 0. In both cases only the lowest
order maximum (m = 1) had an appreciable fractional
shift (~ 1%) in axial position. This fractional shift of the
lowest order maximum varied monotonically with a be-
coming zero when o = 0. Thus, this fractional shift is seen
to be caused by the water attenuation and the broadness
of this peak.
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