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CHAPTER 1

INTR ODUCTION

1.1 Conventional Ultrasonic Imaging Approac hes

The useof acousticwavesfor imaging purposesgoesback to the 1910swhenPaul

Lavengin demonstratedthe useof the soundnavigation ranging (sonar) method [1].

The key conceptfor acousticimaging is that an acousticwave propagatingthrough a

medium is scatteredwhen inhomogeneitiesare encountered. Thus, inhomogeneities

insidea volumecan be detectedby radiating it with an acousticwave and measuring

the scatteredenergywith sensorslocated in di®erent locations. Nowadays, acoustic

imaging is usedfor several applications including nondestructive evaluation (NDE)

for the analysisof di®erent materials such asconcrete[2], steel[3] and even wood [4];

and biomedical imaging for intravascular[5] and dermatological[6] applications and

for cancerdetection [7], amongmany others [8].

Acoustic imaging systemsusetransducers,devicescapableof both transmission

and reception of acoustic waves. On the simplest con¯guration, a single-element

transducer is placed at a certain position, on which it transmits an acoustic wave

and then receives the backscattered echoes. This imaging modality is known as

monostatic pulse-echo imaging.

Becausea transducerhas a ¯nite size,the radiation pattern su®ersfrom di®rac-

tional e®ects.The point spreadfunction (PSF) of the imaging system[9] is de¯ned

as the 2-D impulse responseof the system, i.e., the image that would be formed if

only one in¯nitesimal scatterer werepresent in a particular position in the region of

interest. A typical point spreadfunction consistson a main lobe and sidelobes. The

shape and amplitude of this function determine the quality of the imagesthat can

be formed with a particular imaging system.

The quality of an acousticalimaging systemis determinedby two principal quan-

tities known as spatial and contrast resolution. Spatial resolution is the abilit y of

the system to discriminate two targets of equal amplitude that are closetogether.
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When dealing with 2-D images,the spatial resolution is de¯ned independently for

both axes: the axial resolution is related to the abilit y to discriminate two targets

closetogether on the direction of propagation of the wave and dependson the pulse

duration, whereasthe lateral resolution is de¯ned for the direction transverseto the

propagation of the wave and depends on the di®raction pattern of the transducer

that is used. The two points will be resolved if two peakscanbe discerniblein the re-

sulting image;the criterion to determinethe resolvabilit y of the peaks,however, can

be arbitrarily established,which results in several de¯nitions for spatial resolution

[9]. The Rayleigh criterion, for example, is de¯ned as the separation between two

copiesof the point spreadfunction that would result on the peak of the mainlobe of

onelanding on the ¯rst zeroof the other. Another de¯nition is the Sparrow criterion,

which is de¯ned as the minimum separationbetweentwo copiesof the point spread

function for which the dip that is formedhalfway from the peaksis down in intensity

by a factor of two [10].

Contrast resolution is the abilit y to resolve two areasof di®erent brightnesson

the image. Here the main limitation is the amplitude of the sidelobes of the point

spreadfunction. Consider the caseof a cystic target of low re°ectivit y surrounded

by a region of high re°ectivit y scatterers. When the mainlobe is over the cyst, the

sidelobesare partially over the surrounding regionswhich do re°ect the soundmore

e±ciently, and henceit will appear that there wasre°ection from insidethe cyst. The

higher the level of the sidelobes,the moreseverethis phenomenonwill be. If the cyst

is small enoughthen it can be completely ¯lled by the re°ections of the surrounding

regions. It shouldbe noted that a wide mainlobe will alsoshadow regionsof negative

contrast.

In summary, a good imaging systemhas a very small mainlobe and sidelobesof

a very low level. However, there are several factors that can a®ectthe PSF of an

acousticimaging system.

One factor that a®ectsthe width of the mainlobe is the wavelengthof the acous-

tic wave, which is inversely proportional to its frequency. This is why ultrasonic

waves(acousticwaveswith frequenciesabove the audible range)are usedfor medical

imaging, where the sizeof the discontinuities can be in the rangeof micrometersor

below. However, attenuation also increaseswith frequency[11], thus leading to one

a well-known trade-o®for this kind of applications: spatial resolution versusdepth
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of imaging.

Transducerscanbeconstructedusingdi®erent geometriesto changeits di®raction

pattern. The ¯rst type of transducers that was used was unfocused(such as the

circular piston geometry[12]) and did not have good spatial resolution at any point

in the image. Soon they werereplacedby sphericaltransducers[10], a geometrythat

had a radiation pattern that was focusedon a small region of spacecalled the focal

region. Even though the lateral resolution is greatly improved on the focal region, it

actually worsenseverywhereelsedue to the spreadingof the beam. Becausea more

focusedtransducerhasa smaller focal region, for this geometrythere is a tradeo®of

high resolution on the focal region versusthe sizeof the region that can be imaged.

It is clear that the key to improve the resolution of a systemis to achieve focus

throughout the regionof interest (ROI). When usinga monostaticcon¯guration, this

can be accomplishedusing synthetic aperture focusing techniques (SAFT), which

consistof combining the receivedsignalscorresponding to di®erent scanningpositions

in order to construct a synthetic beam. The problem of this type of technique is the

generation of high level sidelobes which compromisethe contrast resolution; this

problem can be reducedusing apodization at the cost of sacri¯cing lateral resolution

[13].

The best quality acousticimagesare achieved usingarray imaging [14], for which

more than onetransduceris usedto transmit and receive acousticwaves. The trans-

ducersthat are grouped to form the array are known as elements, and they can be

arrangedin one,two or three dimensions.When the elements transmit together, the

overall di®ractionpattern is modi¯ed and the resulting mainlobe is narrower than the

one corresponding to the individual elements. A phasedarray is one for which the

elements can be ¯red individually. This is especially important becauseit allows to

focus the transmitted ¯eld on di®erent portions of the ROI by applying appropriate

delays to every element. Sidelobe levels can be controlled by apodizing the array

elements. Also, becausemore power is transmitted into the ROI, the signal-to-noise

(SNR) level of the resulting imageis improved.

However, phased array imaging has its own limitations. One of them is the

appearanceof grating lobes,which are due to spatial aliasing, i.e., when the center-

to-center spacingbetweenadjacent elements (known as elementpitch) that conform

the array do not satisfy the Nyquist sampling criterion. Grating lobesdo not exist
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if the element pitch is lessor equal than a wavelength if no steering is used, and

lessthan half a wavelength if the beamis steered[12]. It should be noted, however,

that for pulsedwavesthis condition is relaxeddue to the time separationamongthe

pulsesfrom individual elements. Becausethe minimum element pitch is dependent

on the wavelength, i.e., inversely dependent on the frequency, the construction of

an array is more challenging as the frequency increases. The issueof crosstalking

betweenadjacent elements alsohave to be considered.Additionally , the needto have

separateelectrical connectionsto ¯re each element individually causesthe required

hardware to be more complex.

Another limitation for phasedarrays is the acquisition time. Multiple transmis-

sionsare neededin order to achieve focus at di®erent depths within the ROI. The

time betweenthe initiation of consecutive transmissionsis known aspulserepetition

frequency(PRF). The PRF cannot be arbitrarily largebecauseechoescorresponding

to consecutive transmissionsshould not overlap. Becausethe time of arrival of the

pulsesdepends on the speed of sound, the PRF is a fundamental limit of phased

arrays. Several techniqueshave beenproposedto overcomethis limitation, among

them the useof amplitude-steeredarrays [15] and coded-excitation arrays [16].

The contrast resolution is particularly compromisedwhen dealing with speckle

basedimages[17],[18]. The resolution cell of an imaging system is de¯ned as the

area (or volume) that corresponds to the smallest resolvable detail. Becauseultra-

sonic imaging is coherent, when there are many scatterersrandomly distributed in a

resolutioncell, their re°ectionsmay interfereconstructively or destructively, depend-

ing on their relative position to the transducer, generatingspots of brightnessand

darknessin the image. For focusedsystems,thesespots tend to have a sizeon the

order of the focal region [10], and the resulting image will have a granular appear-

ance. Speckle is very common in ultrasound medical imaging becausebody tissue

is a semitransparent media. If the point spread function has a wide mainlobe or

high level sidelobes,the spots generatedby the speckle can mask regionsof negative

contrast. This is particularly harmful in applications such as early cancerdetection.

B-mode, SAFT, and array imaging have beenstudied for a long time and their

limitations arewell documented. There exist another approach to the problem which

consists in using inverse formulations and regularization theory, for which several

techniques have been proposedin acoustic and similar imaging modalities such as
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radar. It is of special importance to compare their performancewith that which

can be obtained usingconventional acousticimaging methods. Speckle-basedimages

are proposedas targets of reconstruction becauseof the limitations of conventional

techniqueswhile dealing with thesetype of images.

1.2 In verse Problems Approac h to Ultrasonic Imaging

Inverse formulations depend on a function (forward model) that represent the

measureddata at the output of a system as a function of a set of variables. An

inverse problem formulation consistsof ¯nding the values of the variables of the

system, given the acquired data and the forward model. An example of such an

approach was explored in [19] using a minimum meansquareerror (MMSE) inverse

¯lter to avoid di®ractional e®ectsin ultrasound SAFT imaging. Due to instabilit y of

the forward model in the presenceof noiseor errors in modeling, the mere inversion

of the system can lead to inaccurate results. To deal with this limitation, prior

information about the data to be recoveredare incorporated also in the model used

for inversion. This processin known as regularization.

A well known regularization approach is the truncated singular value decomposi-

tion (TSVD), which ¯lters the unstable eigenvaluesof the forward model to achieve

stabilit y during the inversion. The number of eigenvaluesto be ¯ltered dependson

the stabilit y of the forward model and the amount of noisein the data. TSVD was

explored for B-mode imaging in studies like [20] and [21]. Its main computational

limitation is the need to calculate the singular value decomposition (SVD) of the

forward model.

Another commonlyusedtechnique is Tikhonov regularization, which results from

adding to the error function of the least squaresolution an extra term that is the

quadratic norm of a linear transformation of the data to be recovered. The prior

knowledgeis introducedthrough an appropriate choiceof the linear transformation.

Total least squaresis a natural extensionto the least squaressolution to a linear

problem, by taking into account sourcesof error not only on the data but alsoin the

forward model. Lately, this technique hasbeenexploredin [22] applied to ultrasonic

inversescattering.

A very simple yet powerful extensionto Tikhonov regularization corresponds to

using a linear cost function with a nonquadratic norm. This conceptwas ¯rst used
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in a technique called total variation regularization, which consistsof using Tikhonov

regularization with a discretegradient operator and a norm equal to 1. Such a regu-

larization techniquewasfound to preserve edgesin imagesbetter than the equivalent

quadratic Tikhonov regularizer. It was used in [23] to solve for breast ulstrasonic

imaging and in [24] for undergroundarray imaging using electromagneticpulses.

Studies with total variation regularization showed that using a norm lessthan

2 for the regularization cost function results in a higher enforcement of the a priori

information. This conceptcan be usedwith any linear operator and any value of the

norm of the cost function, resulting in generalizedTikhonov regularization with l k
k

norm cost functions. Examplesof the useof this type of regularization for pulse-echo

imagingproblemsare [25] applied to spotlight SAFT radar imagingand [26] for point

sourcelocalization using sensorarrays. A more generalframework for the selection

of valid regularization cost functions for generalizedTikhonov was explored in [27].

This relates to the work of Delaney and Bresler [28] for limited angle tomography

and Jarrot et al. [29] for ultrasonic elasticity imaging.

The improvedperformanceof nonquadraticTikhonov occursbecauseit causesthe

solution to the augmented least meansquareproblem to be of the form A(x)x = y,

where the matrix operator dependson the data, and henceincorporates additional

a priori knowledge on the inversion equations. This is also accomplishedby the

least squareswith point-count regularization (LPCR) [30], [31] which usesan image

reconstructedwith a modi¯ed Wiener ¯lter to have an approximation of regionsof

high energyin order to construct a cost function that penalizessolutions with high

energy content. Mumphord and Shaw regularization was conceptually introduced

in [32] and deals with the joint problem of estimating the unknown data and the

edge¯eld of the imagesothat the energyof the edgecan be usedasa regularization

constraint, just likethe energyof the wholeimageis usedin LPCR. This approach is of

special interest for segmentation problems. A nonquadratic versionof the algorithm

was implemented and usedto reconstruct radar and ultrasonic imagesin [33].

Entropic regularizers(theoretical development can be found in [34] and appli-

cations to radar imaging in [35]) are designedto enforcesolutions with low energy

content and were found to be superior to Tikhonov regularization for the caseof

sparseimages.
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1.3 Con tribution of this Work

A wide variety of regularization techniques have been suggestedfor pulse-echo

imaging in acousticsand other coherent imaging modalities. Most have beentested

with two typesof images:a small collection of isolatedscatterersor compactregions

with a continuous, locally uniform re°ectivit y distribution. However, the usefulness

of regularization techniquesfor speckle basedimageshasnot beenproperly explored.

Given a ¯xed regularization inversionmethod, there are many factors that can a®ect

the quality of the reconstruction, which includes imaging parameters(such as the

bandwidth of the transducer),regularizationparameters(which aredependent on the

speci¯c type of regularization used),and sourcesof noise(such aserrors in modeling

or additive noiseon the acquireddata). All of thesefactors have to be consideredin

order to evaluate the performanceof the reconstruction algorithm. Becauseof their

conceptualsimplicity and reported performance,quadratic and generalizedTikhonov

have beenchosenasregularization techniques. The goalsof this study are to explore

the feasibility and e®ectivenessof regularization by:

1. Evaluating the quality of the reconstructionof speckle-basedimagesasa func-

tion of imaging parameters(i.e., bandwidth of the transducer, f/n umber, and

distancebetweenROI and focal region), and

2. Comparingthe reconstructedimageswith thoseobtainedby conventional imag-

ing techniques,e.g.,B-mode and SAFT.

1.4 Organization of this Thesis

This thesis is organizedas follows: Chapter 2 presents an overview of conven-

tional monostatic pulse-echo imaging techniques. Chapter 3 presents formulation

of pulse-echo imaging using inverseformulations and an overview of regularization

theory as a tool to solve this problem. Chapter 4 presents simulations to show the

performanceof the inversion algorithm and the e®ectof several parametersin the

quality of the reconstruction. Finally, Chapter 5 discussesthe results of this work

and o®erssuggestionsfor future work.
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CHAPTER 2

CONVENTIONAL UL TRASONIC IMA GING

In the following discussion,only monostatic imaging (i.e., using only one trans-

ducerfor transmission/reception)will bediscussed.Array imagingwill not becovered

in the present study.

2.1 B-Mo de Imaging

The con¯guration for monostatic acousticalimaging is depicted in Figure 2.1(a).

The transducer is placedon a certain position over the external surfaceof the ROI,

whereit sendsan acousticpulseand receivesthe corresponding echoes. The envelope

of the signal formedby the echoescan be displayed asa function of time (or distance

if the speedof soundis known) in what is known asan A-scan[36] (A standsfor am-

plitude); an exampleis shown in Figure 2.1(b). The envelope is typically compressed

in a logarithmic scalebecauseof the large dynamic range of the signal. The scan-

ning processcanbe repeatedfor di®erent scanningpositionsover a certain tra jectory

(typically a straight line), such that information is gathered for a crosssection of

the ROI; a 2-D imagecan be formed, with each column corresponding to a scanning

position. The brightnessof the pixel for each column is proportional to the ampli-

tude of the envelope of the received echoes. Such an image is known as a B-scan

or B-mode image (B stands for brightness); an example is shown in Figure 2.1(c).

An echo sequenceis acquiredfor every scanningposition, and every echo sequenceis

mapped to a column in the B-mode image.

2.1.1 Tw o-p oin t spatial resolution of a B-mo de imaging system

The two-point spatial resolutionof an imaging systemis determinedby its abilit y

to discriminate two point-lik e targets closetogether. When the image is restricted

to a plane, we are concernedabout the resolution in both axes, resulting in two

de¯nitions of resolution [10]:
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Figure 2.1: B-mode imaging con¯guration
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1. The axial resolution is the spatial resolution in the direction of propagation of

the wave and is restricted by the time duration of the signal emitted by the

transducer (or equivalently, on its bandwidth). The two-point axial resolution

of a systemcan roughly be approximated, assuminguniform frequencycontent

in the bandwidth, as

¢ x =
c

2B0
(2.1)

where:

c = speedof sound

B0 = bandwidth of the signal

2. The lateral resolution is the spatial resolution on the axis perpendicular to the

direction of propagationof the wave. While the axial resolution dependsexclu-

sively on the bandwidth of the emitted signal, the lateral resolutiondependson

the characteristicsof the ultrasonic system. For a given geometryof a source,

the beamwidth is a function of the position. The two-point lateral resolution

is de¯ned as

¢ y = 2r tan ' (2.2)

where

r = depth of the target on the X axis

' = half-beamwidth angle

2.1.2 Characteristics of common geometries for ultrasonic transducers

Two commontypesof transducerswill be brie°y discussed:nonfocusedcircular

pistons and focusedtransducers.

Nonfocused transducers. The most representativ e geometryis the circular piston,

which consistsof a planar, circular surfacewith a uniform surfacevelocity [12]. For

this geometry, the half-beamwidth anglebetweennulls is given by

' = arcsin
3:83
ka

(2.3)

where

k = wave number of the acousticwave
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a = radius of the transducer

For Eq. (2.3) to be valid, the target must be in the far ¯eld of the transducer,

i.e., the distancefrom the transducerto the target shouldbe larger than the Rayleigh

distance,which can be approximated by

RRayleigh =
¼a2

4¸
(2.4)

where

¸ = wavelength of the acousticwave

a = radius of the transducer

It canbeseenfrom Eq. (2.3) that the beamwidth for a planar piston hasan inverse

dependencyon the radius of the transducer,which meansthat a larger transduceris

more directive (has a narrower beamwidth) than a smaller one.

Focused transducer. The ultrasonic beam can be focused on a certain region

(named focal region) to obtain high acoustic intensity and good lateral resolution.

This can be accomplishedby using a concave, spherically shaped transducer [10]

which will produce a beam pattern that is focusedcloseto its radius of curvature

(ROC). This geometryis depicted in Figure 2.2.

Figure 2.2: Geometry of a focusedtransducer

A parametercommonlyusedto describea sphericaltransduceris the focal number

or f # , which is de¯ned as the ratio of the ROC and the diameter of the transducer:
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f # =
ROC

D
(2.5)

The lower the f # , the more focusedthe transducer is. The degreeof focusing will

havea direct impact on all the parametersof the di®ractionpattern of the transducer.

The half-beamwidth spreadingangle for depths beyond the focal region can be

approximated as

' = arctan
1

2f #
(2.6)

Another parameterde¯ned for a focusedtransducer is the depth of focus,which

is the -6 dB beamwidth in the direction of propagation, and is given by

Fz = 7:08̧ f 2
# (2.7)

Also, for a focusedtransducer, the -6 dB beamwidth on the cross-rangeaxis at

the ROC givesthe lateral resolution at the focus:

FD = 1:028̧ f # (2.8)

A transducerwith a smallervalue for f # will have better lateral resolution at the

focus accordingto Eq. (2.8), a shorter depth of focus accordingto Eq. (2.7), and a

larger spreadingangle accordingto Eq. (2.6). Hence,there is a trade-o®involving

the sizeof the ROI and the best lateral resolution.

In speckle-basedimages,several scatterersare present within a resolution cell.

Becauseof this, the imageshave a granular appearancewith bright and dark spots.

The size of the speckle spot is known as correlation cell size [18]. The correlation

cell size is in the sameorder of the sizeof the focal region [10], [18]. Approximate

expressions(taken from [18] with the bandwidth B0 given by the standard deviation

of the pulseenvelope shape) for the lateral and axial correlation cell sizesSlater al and

Saxial are

Slater al = 0:87̧ f # (2.9)

Saxial =
0:91
B0

(2.10)
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2.2 Stripmap Synthetic Ap erture

When a sourcewith a larger physical aperture (diameter) is used, the beam is

more directional and a better lateral resolution is achieved. That is the principle

behind synthetic aperture, which encompassesa group of techniques to simulate a

larger aperture using elements with a small physical aperture. The axial and lateral

resolution will depend on the con¯guration usedto synthesizethe aperture.

The simplest SAFT con¯guration is called stripmap [37]. A simple diagram for

a stripmap synthetic aperture systemis depicted in Figure 2.3:

Figure 2.3: Con¯guration for stripmap imaging

On this con¯guration, the echoes are collected at evenly spacedpositions with

a distance of ¢ u acrossa distance L. The echoes from the re°ector collected at

the position u = i¢ u, i = 0; 1; 2::: due to an ideal point target, assumingthat the

transducer transmits an spherical wave over a certain beamwidth given by µ, will

occur at the time given by

¢ tu =
2
q

x2
n + (yn ¡ u)2

c
(2.11)

where

c = speedof sound

xn = depth of nth target

yn = azimuthal position of the nth target
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The time delays arecalculatedassumingconstant speedof sound. The factor of 2

comesfrom the fact that the time correspondsto a round trip betweenthe transducer

and the target.

2.2.1 SAFT signal pro cessing for stripmap con¯guration

The reconstructionprocesscanbeperformedusingoperationsin the time domain

with an algorithm known as backprojection [37], [38]. To ¯nd an approximate value

of the re°ectivit y at a position (x; y), the backprojection algorithm adds coherently

the data at the times given by Eq. (2.11) for every scanningposition u.

Equation (2.11) mapsthe position (x; y) to a value of time corresponding to the

start of an echo, but becausethe peak of the echo occursat a later moment in time,

the signalshave to be deconvolved in order to apply the backprojection algorithm.

If the deconvolution is not performed,the quality of the imagewill be degraded.For

this purpose, the signal is correlated with a referencesignal, which corresponds to

a typical waveform emitted by the transducer (for a focusedtransducer, the signal

can be the wave at the focus). The correlation is a measureof the similarit y of two

signals. If the received signalcontains echoes(delayed versionsof the emitted pulse),

then the maximum of the correlation will occur at the positions in which such echoes

start. The correlation can be expressedin terms of a convolution so this processis

commonlyreferredasmatched¯ltering, and the referencesignalsR(t) asthe matched

¯lter:

sM (t; u) = s(t; u) ¤ s¤
R(¡ t) (2.12)

where

sM (t; u) = matched ¯lter signal

s(t; u) = signal received at the scanningposition u

In the radar community, the transmitted signal is a chirp (frequencymodulated)

pulse, which has a very large bandwidth and is highly asymmetric. Hence, the

matched ¯ltering processenhancesthe axial resolution. However,ultrasonic pulses

are very limited in terms of bandwidth, sothe matched ¯ltering processdegradesthe

axial resolution.

Data smearing acrossseveral points in the image occurs becauseof the ¯nite

physical aperture size. Beamforming improves the quality of the image becauseit

exploits the redundancyof the measurements. Beamforming in the time domain is
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accomplishedusing the backprojection algorithm, which consistson performing a

weighted integral of the valuesof the received signal that correspond to time values

that lie in the geometricplaceof the dispersionof a target point locatedat coordinates

(x; y), which accordingto Eq.(2.11) is a hyperbola. The backproyectedsignal can be

expressedas

s(x; y) =
Z y+ B Wx

y¡ B Wx

®usM

0

@
2
q

x2 + (y ¡ u)2

c
; u

1

A du (2.13)

where

BWx = beamwidth of the signal at the depth x

®u = apodization factor

sM = matched ¯ltered signal

When Eq. (2.13) is used,the backprojection operation will give higher valuesif

it is applied at positions in which a target exists; however, the values that will be

generatedfor positions in which no targets are present are not going to be equal to

zero. This is the mechanism of sidelobe formation in SAFT. The apodization factor

®u is usedto reducethe level of the sidelobes,at the expenseof degradingthe lateral

resolution [13]. Only scanningpositions that are inside the subaperture (i.e., the

region of spacethat lies within the beamwidth of the transducerat a certain depth)

are included in the integral.

The integral in practice will be replacedby a sum, and the valuesof x and y will

be discretized to the values of the grid for which the image will be reconstructed.

Becausewe are dealing with discrete-timesignals,the value of the matched ¯ltered

signal is only known for discretevaluesof time; thus, interpolation should be used.

However, if the sampling frequency is high enough, good performanceis achieved

without the needof interpolation.

It is also worth mentioning that SAFT reconstruction can be performed in the

frequencydomain using algorithms such as frequency interpolation [39] and range

stacking [38]. Thesetechniquesare reported to have lower computational cost than

their time domain counterparts.
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2.2.2 Spatial resolution of stripmap synthetic aperture techniques

The improvement of the lateral resolution when using stripmap SAFT is mainly

limited by the beamwidth of the transducer. Although in B-mode imaging a small

beamwidth is desirable,in synthetic aperture imaging a larger beamwidth will cause

morelinesto beincludedin the subaperture for every depth andhencethe uncertainty

region can be further reduced. There is a relationship betweenthe geometryof the

transducer and the beamwidth, so the lateral resolution will also be dependent on

the type of transducerused. For a circular piston of radius a, the limit on the lateral

resolution is given by

¢ y =
a
2

(2.14)

In the caseof a focusedtransducer, it hasbeenshown in [40] that the geometric

focus can be treated like a virtual source of ultrasound; therefore, the synthetic

aperture processingcan be accomplishedby delaying the signalswith respect to the

position of the focus(and not the surfaceof the transducer,asin the caseof a planar

piston). The expressionfor the lateral resolution was shown to be

¢ y = 0:82f # ¸ (2.15)

It can be noted that in both cases,the lateral resolution is only dependent on the

geometry of the transducer and no longer dependson the depth of the ROI. Also,

for a focusedtransducer,the theoretical lateral resolution for SAFT is even lessthan

the best achievable for B-mode, which is given by Eq. (2.8). However, due to the

presenceof sidelobesgeneratedduring the signal processing,the contrast resolution

of the imagesgeneratedusing SAFT is worse than that achievable with a B-mode

imagewhen the ROI is at the physical focusof the transducer.

The conceptsdeveloped in this chapter will be illustrated though a simulation

corresponding to a ROI containing a singlepoint scatterer. The simulated transducer

is sphericalwith f # of 1, 50%bandwidth and a center frequencyof 6 MHz. The speed

of soundwassetequalto 1500m/s, which yieldsa wavelength¸ equalto 250¹ m. The

results for the simulations are shown in Figure 2.4. Figure 2.4(a) shows the B-mode

imagegeneratedwhen the scatterer is at the focus of the transducer, with a lateral

resolution of 275 ¹ m which is very closeto the expected value given by Eq. (2.8).

Figure 2.4(b) correspondsto the casewhenthe scattereris 3 mm beyond the focusof

the transducer. The beamspreadingis clearly noticeableand the lateral resolution,
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which hasa value of 1575¹ m, is severely degraded.Figure 2.4(c) shows the result of

applying SAFT processingto the out of focusB-mode image. Hamming apodization

was usedfor the reconstruction. The lateral resolution is equal to the one achieved

when the scatterer was at the focus of the transducer (275 ¹ m). However, it can

be seenthat sidelobes were formed during the reconstruction. Figure 2.4(d) shows

the beampro¯les (in decibels) at the depthsof maximum mainlobe (blue curve) and

sidelobe (red curve) intensities. The maximum intensity of the sidelobes is 26 dB

below the maximum intensity of the mainlobe.
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Figure 2.4: Reconstructedimagesusing conventional techniques for a single point

scatterer
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This concludesthe brief overviewof monostaticconventional imaging techniques.

The proceduresfor image generationusing B-mode and SAFT have beenoutlined.

The spatial resolution for targets on focus and out of focus have been analyzed

through governing equationsand a simple example. Also, it has been shown that

SAFT improvesthe lateral resolution at the cost of sidelobe generation. In the next

chapter, the formulation of monostatic pulse-echo imaging using regularization will

be described.
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CHAPTER 3

REGULARIZA TION THEOR Y FOR IMA GE
RECONSTR UCTION

3.1 Pulse-Ec ho Imaging Problem Using an In verse Problems
Form ulation

Considerthe con¯guration shown in Figure 3.1.

Figure 3.1: Con¯guration for pulse-echo imaging inversion

The ROI is a squareregion with xa · x · xb and ya · y · yb. The transducer
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is moved acrossthe Y axis, and the pulse-echo data is acquired at locations ul ,

1 · l · q. The received signal is sampledat discrete times tk , 1 · k · p; the time

signal recordedat the position ul will be denotedby g(t; ul ).

The ROI is also discretized,with the discrete valuesof x and y denoted by x i ,

1 · i · n and yj , 1 · j · m. The re°ectanceof the ROI will be assumedto be

constant for each pixel and will be denotedby r (x i ;yj ) .

The spatially variant impulse response of the transducer (i.e., the signal that

would be received if a point target of unitary amplitude is at the coordinates (x̂; ŷ)

relative to the transducer) will be denotedby sx̂; ŷ(t). Such function dependson the

geometry and time impulse responseof the transducer, and is in generala compli-

cated function for which no suitable closedform exists. However, for simulations it

can be computed using numerical methods like the FIELD II [41] program; or for

experiments it can be measuredusing a hydrophoneor the wire technique [42]. The

spatial impulse responsehas to be calculated for the acquisition time interval of the

pulse-echo data and sampledat the samesamplefrequencyused in the acquisition

process.

If the transduceris placedat the location ul , the received pulse-echo data will be

the sum of the contribution of the time impulse responseof all the pixels of the ROI

scaledby the valuesof the re°ectancesof each pixel, sothat g(t; ul ) can be expressed

as

g(t; ul ) =
nX

i =1

mX

j =1

r (x i ; yj )sx i ;yj ¡ u l (t) (3.1)

For the last equation, the fact that the relative coordinatesof the point (x i ; yj ) when

the transducer is at the point (0; ul ) are equal to (x i ; yj ¡ ul ) has beenused. Since

the signalsg(t; ul ) and sx̂ ;ŷ(t) are known for discretevaluesof time, the last equation

can be expressedas:

g(tk ; ul ) =
nX

i =1

mX

j =1

r (x i ; yj )sx i ;yj ¡ u l (tk) (3.2)

Both sequencesg(tk ; ul ) and r x i ;yj are two-dimensional,so that in order to express

Eq. (3.2) as a linear system,the vectorscorresponding to g(tk ; ul ) and r x i ;yj have to

be stacked to form a one-dimensionalsequence.With this modi¯cation, Eq. (3.2)

can be rewritten in matrix form as
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where

AP E =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

2

6
6
6
6
4

sx1 ;y1 ¡ u1 (t1)

sx1 ;y1 ¡ u1 (t2)
...

sx1 ;y1 ¡ u1 (tp)

3

7
7
7
7
5

2

6
6
6
6
4

sx2 ;y1 ¡ u1 (t1)

sx2 ;y1 ¡ u1 (t2)
...

sx2 ;y1 ¡ u1 (tp)

3

7
7
7
7
5

¢¢¢

2

6
6
6
6
4

sxn ;ym ¡ u1 (t1)

sxn ;ym ¡ u1 (t2)
...

sxn ;ym ¡ u1 (tp)

3

7
7
7
7
5

2

6
6
6
6
4

sx1 ;y1 ¡ u2 (t1)

sx1 ;y1 ¡ u2 (t2)
...

sx1 ;y1 ¡ u2 (tp)

3

7
7
7
7
5

2

6
6
6
6
4

sx2 ;y1 ¡ u2 (t1)

sx2 ;y1 ¡ u2 (t2)
...

sx2 ;y1 ¡ u2 (tp)

3

7
7
7
7
5

¢¢¢

2

6
6
6
6
4

sxn ;ym ¡ u2 (t1)

sxn ;ym ¡ u2 (t2)
...

sxn ;ym ¡ u2 (tp)

3

7
7
7
7
5

...
...

...
2

6
6
6
6
4

sx1 ;y1 ¡ uq (t1)

sx1 ;y1 ¡ uq (t2)
...

sx1 ;y1 ¡ uq (tp)

3

7
7
7
7
5

2

6
6
6
6
4

sx2 ;y1 ¡ uq (tm )

sx2 ;y1 ¡ uq (t2)
...

sx2 ;y1 ¡ uq (tp)

3

7
7
7
7
5

¢¢¢

2

6
6
6
6
4

sxn ;ym ¡ uq (t1)

sxn ;ym ¡ uq (t2)
...

sxn ;ym ¡ uq (tp)

3

7
7
7
7
5

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

21



In this formulation, the matrix AP E represents the numerical synthesis of the

Green's function of the system. If the systemof equationsshown in Eq. (3.3) can

be solved, then the re°ectancesof the ROI can be recoveredbasedon the measured

data. The rest of this chapter will show this can be achieved by using regularization

methods and discussthe implementation of the techniquesthat have beenusedon

the simulations performedfor this study.

3.2 Least Squares and Generalized Solution

Considerthe following set of equations:

Ax = y (3.4)

The three possiblescenariosare as follows:

1. The system is full rank; i.e., the number of equations equals the number of

unknowns. In this casethere is only onesolution which is given by

x̂ = A ¡ 1y (3.5)

2. The equationmatrix A hasmore columnsthan rows; i.e., there are more equa-

tions than unknowns. An exact solution for the systemdoesnot exist, so this

problem is solved in the mean squaresense.The solution is chosento be the

vector x that satis¯es the least squaresequation

x̂ = argmin
x

jj y ¡ Ax jj 2
2 (3.6)

3. The equation matrix A has more rows than columns; i.e., there are more un-

knowns than equations. There are in¯nite many solutions for this type of

system,which is also solved in a meansquaresense.The solution x̂ is chosen

to be the minimum energysolution to the least squaresequation,which is also

the solution to cases(1) and (2) and is given by

x̂ = argmin
x

jj xjj 2
2 subject to min jjy ¡ Ax jj 2

2 (3.7)

An important tool for the solution of linear systemsis the pseudoinverse. For a

matrix A, its pseudoinverseis denotedby A+ . Using singular value decomposition,

we can express:
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A = USV T (3.8)

with U and V unitary matricesand S a diagonalmatrix with the eigenvaluesof A in

decreasingorderover the main diagonal. The matrix S+ is constructedby transposing

S and replacing the non-zeroentries by their reciprocals. The pseudoinverseA+ is

then de¯ned as

A+ = VS+ UT (3.9)

The pseudoinverseof a full rank matrix is equal to its inverse,that is, A+ = A ¡ 1.

It can be shown [43] that the solution to Eq. (3.7) can be expressedin terms of the

pseudoinverseof the forward operator as

x̂ = A+ y (3.10)

3.3 Regularization

The problem with the pseudoinversesolution arisesfrom the fact that the system

de¯ned by Eq.(3.4) can be unstable. The stabilit y of a linear systemis dependent on

the linear independenceamong its equations. The condition number of a matrix is

the ratio betweenits largestand the smallestsingularvalue,and givesa measurement

of the stabilit y of the system. To seewhy, we can rewrite Eq. (3.10) ¯rst without

noisein the data:

x̂ = A+ y =
rX

i =1

uT
i y
¾i

(3.11)

The terms uT
i y are known as the generalized Fourier coe±cients ; a system is said

to satisfy the discretePicard condition if the terms uT
i y on the averagedecay faster

than the corresponding eigenvalues¾i [44].

Now for the casewherethe ideal data y is contaminated with noiselabeledasw,

we can write

x̂ = A+ (y + w) = A+ y + A+ w (3.12)

and using the SVD decomposition

x̂ =
rX

i =1

uT
i y
¾i

+
rX

i =1

uT
i w
¾i

(3.13)

23



Even though the eigenvaluesof the matrix A decrease,the terms uT
i y decreaseac-

cordingly sothat the contributions of y are bounded;however, the terms uT
i w do not

satisfy the discretePicard condition so that the noiseis ampli¯ed and the solution

is distorted. Since the ampli¯cation of the noise depends on the reciprocal of the

eigenvalues,a large condition number meansthat the matrix is more unstable.

To counteract the noiseampli¯cation, the formulation of the inverseproblem has

to bemodi¯ed sothat it becomesstableevenin the presenceof noiseby incorporating

a priori information about the relevant featuresof the desiredimage. This approach

is known as regularization.

A regularization method is de¯ned as an inversion method dependent on a pa-

rameter ® (called the regularization parameter)which yields a family of approximate

solutions. In a noiselesscase,the best solution will be obtained if ® = 0, i.e., if no

regularization is applied. In the presenceof noise,however, the value of ® should be

selectedso that the modi¯ed system is stable at the cost of loosing featuresof the

data to be recovered. Hence,onemust selecta value of ® that not only ensuresthat

the systemwill be stable for the expected valuesof signal-to-noiseratio (SNR) but

alsopreservesmost of the featuresof the data to be reconstructed,sothat the choice

of an appropriate value of ® becomesextremely important.

3.4 TSVD Regularization

The most intuitiv e way to compensatefor a high condition number in a linear

problem is to limit the lower valueof the eigenvaluessothat that the ratio ¾max =¾min

is constrainedto a certain value. This regularization is calledtruncated singularvalue

decomposition (TSVD)[44] and can be expressedas

x̂ =
rX

i =1

w®(¾i )uT
i y

¾i
(3.14)

where

w®(¾i ) =

8
<

:
1; if ¾i · ®

0; else

For this method, the regularizationparameteris the lower bound for the eigenval-

ues. Even though this solution is very straightforward, the singular value decompo-
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sition of the matrix A, which is computationally demandingfor large scalesystems,

has to be performedin order to apply this technique.

3.5 Tikhono v Regularization

One of the most commonregularization methods is the Tikhonov regularization

[45], which consistsin modifying the least squaresequation by adding an additional

cost function equal to the squarel2 norm of a linear transformation of x:

x̂ = argmin
x

©
jjy ¡ Ax jj 2

2 + ®2jjLx jj 2
2

ª
(3.15)

The advantageof Tikhonov regularization is that sincethe modi¯ed cost function

is quadratic, the gradient of Eq. (3.15) is linear, and the solution in the meansquare

senseis given by the following linear system:

(AT A + ®2LT L)x̂ tik = AT y (3.16)

The particular choice of the linear transformation matrix L will determine the

featuresthat this regularization method will enhance.Two commonchoicesare the

following:

1. The identit y matrix I , for which the cost function is simply the energyof the

image. The inclusion of this term implies a penalization of solutionswith large

norm, so it favors low energysolution. Using the SVD of the system,it can be

shown that the solution can be expressedas

x̂ =
rX

i =1

w®(¾i )uT
i y

¾i
(3.17)

where

w®(¾i ) =
¾2

i

¾2
i + ®2

The e®ectis a ¯ltering of the smaller singular values,smoother than the case

of the TSVD regularization, with the advantage that the SVD of the system

doesnot needto be calculated. Notice that for large® sothat AA T < ®2I , the

asymptotic solution for x̂ is given by

x̂®!1 =
AT y
®2

(3.18)
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This last equation basically shows that the solution for large ® will correspond

to the adjoint operator AT applied to the data and scaledby a factor of 1
®2 .

A direct consequenceis that asymptotically with ®, the estimate x̂ will go to

zero.

2. The discreteapproximation to the gradient,

L =

2

6
6
6
6
6
6
6
4

1 ¡ 1 0 0 ¢¢¢ 0

0 1 ¡ 1 0 ¢¢¢ 0

0 0 1 ¡ 1 ¢¢¢ 0
...

. . . . . . . . . . . .
...

0 0 0 ¢¢¢ 1 ¡ 1

3

7
7
7
7
7
7
7
5

(3.19)

This term favors solutions that are locally smooth, so it favors reconstructions

of imagesthat consist of several regionsbecauseit preserves the edgesbetter

than in the caseof the identit y matrix and alsoenforcessmoothnessaway from

the edges.

3.6 Generalized Tikhono v Regularization

Tikhonov regularization consistsin adding a quadratic cost function to the least

squaresequation. Even though a quadratic cost function yields to a linear problem,

such penalization may not be optimum for a given problem. A generic approach

known as generalized Tikhonov regularization [46] is given by

x̂ = argmin
x

©
jjy ¡ Ax jj 2

2 + ®2f (x)
ª

(3.20)

The term f (x) is known as penalty or regularization cost function. The term

jjy ¡ Ax jj 2
2 is referred to as the data discrepancyor ¯t-to-data function. Several

choicesof nonquadratic cost function have beenstudied and the simplest one is the

lk
k norm with k 6= 2. The lk

k norm of a vector x, denotedas jjxjj k
k , is de¯ned as

jjxjj k
k

¢=
nX

i =1

jxjki (3.21)

Figure 3.2 shows a comparisonamongthree di®erent norms. It can be seenthat

as the value of k decreases,the penalization is lesssevere for larger valuesand more

severefor smallervaluesof the argument of the l k
k norm function. Becauseof this, the
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featuresin the imagearebetter preservedthan in the caseof quadratic regularization,

and small components of the imagewhich correspond to noisecan be better ¯ltered

while the large valueswhich correspond to the featuresof the desiredimagecan be

better preserved. A well-studiedcasecorrespondsto the l 1
1 norm usedwith the matrix

L equal to the discretegradient approximation, and is known as the total variation

regularization [47]. This regularization method was developed for edge-preserving

regularization, and works better than the equivalent quadratic Tikhonov method.
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Figure 3.2: Comparisonof the lk norm with di®erent valuesof k

A nonquadratic lk
k norm regularization cost analogousto the quadratic Tikhonov

regularization can be expressedas

x̂ = argmin
x

©
jjy ¡ Ax jj 2

2 + ®2jjLx jj k
k

ª
(3.22)

One di±cult y of this particular choice of cost function is that the l k
k norm for

valuesof k lessor equal than 1 is not di®erentiable at zero. Becauseof this, the cost

function can be rewritten as

x̂ = argmin
x

(

jjy ¡ Ax jj 2
2 + ®2

NX

i =1

¡
j(Lx ) i j2 + ¯

¢k=2

)

(3.23)

where¯ is a small, positive constant. The gradient of the last equation with respect

of x can be calculated, resulting in the following equation:
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¡
AT A + ®2LT W¯ (x)L

¢
x = AT y (3.24)

where

W¯ (x) =
k
2

diag
³ ¡

j(Lx ) i j2 + ¯
¢1¡ k=2

´
(3.25)

This nonlinear equation can be solved iterativ ely. Starting with an initial guess

x(0) and using the fact that at convergencex (n+1) = x(n) ,
¡
AT A + ®2LT W¯ (x(n))L

¢
x(n+1) = ° AT y + (1 ¡ ° )H (xn)x(n) (3.26)

where ° · 1 is a parameter controlling the relative amplitude of the terms in the

modi¯ed Hessianupdate equation. The iterativ e processis stopped when the dif-

ference in the norm between successive iterations is small enough, that is, until

jj x(n+1) ¡ x(n) jj 2
2=jjx(n+1) jj 2

2 < ±, where± is the desiredtolerance.

It should be noted also that this particular regularization method has three reg-

ularization parameters. The parameter ® is the one that controls the amount of

regularization imposed. The inclusion of additional regularization parametersadds

more degreesof freedom to ¯nd a more accurate solution, but at the same time

complicatesthe parameterselectionprocess.

3.7 Automatic Regularization Parameter Selection
Techniques

The choice of appropriate values for the regularization parameter is crucial to

obtain good results. Even though for simulations onecanestimatea rangeof optimal

parametersby using visual inspection with a set of referenceimages,in practice the

desiredimagesarenot available, soquantitativ e parameterselectionmethodsneedto

be used. Several parameterselectiontechniquesareavailable and have beenexplored

in the specializedliterature:

1. The discrepancyprinciple [45] was originally introducedby Morozov [48]. The

least squaressolution to a linear problem involves the minimization of the

residual jjy ¡ Ax jj 2
2. For simplicity, it will be assumedthat there exists a

uniquesolution denotedby x̂ for which the residualis equalto zerofor noiseless

measurements y, that is, jjy ¡ Ax̂jj 2
2 = 0. However, in the presenceof additive

noisedenotedby w, the residual when x = x̂ is equal to jjwjj 2
2. For the noisy
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case,the valueof x that minimizesthe residualwill be in generaldi®erent than

x̂. The discripancyprinciple statesthat the regularization parameter® should

be chosento be the largest of the set that generatesa solution that yields a

residual equal to a certain constant, that is

®OP T = max ® subject to jjy ¡ Ax̂®jj 2
2 = k± (3.27)

where± is the expectedvalueof the minimum residualand k is a constant such

that k ¸ 1. For stochastic settings, this is equivalent to knowing the statistics

(mean and variance)of the random additive noise. The main drawback of this

method is that the value of the desired residual is usually unknown or only

roughly estimated in real problems.

2. The L-curve method was¯rst introducedby Lawsonand Hanson[49] and pop-

ularized by Hansen [50]. It consists in plotting the norm of the regulariza-

tion cost (jjL x̂(®)jj 2 for the caseof Tikhonov) versusthe norm of the residual

(jjy ¡ Ax̂(®)jj 2) in a log-log scale. As in the caseof the discrepancyprinciple,

when there is noisepresent in the measurements, the residual is expected to

be the energyof the noiseand not identically zero. For small valuesof regu-

larization parameters,the residual will be too small and becausethe solution

will typically be driven by the noise, the regularization cost will be high. As

the regularization parameterincreases,the residualwill increase,and the regu-

larization cost will decrease.The rate of this change,however, is not uniform.

Intuitiv ely, one should selecta point in which neither the regularization cost

nor the residual dominate the behavior of the curve. If both the cost and the

residual vary smoothly with ® (which is the casefor quadratic Tikhonov regu-

larization), the curve that is formed typically hasan L shape (hencethe name

of this method), and the optimal value of ® is chosento be the onethat corre-

sponds to the corner of this curve (typically chosenas the point of maximum

curvature), as shown in Figure 3.3.

The main limitation of this selectiontechnique is that the L shape of the curve

is not guaranteed for every regularization method; an important example is

TSDV (see [46] for a complete analysis). The applicability of this method

has beenstudied for lk
k norm generalizedTikhonov regularization in [51]. For

Tikhonov regularization, even though the curve will have a L shape, it will be
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Figure 3.3: L-curve method

non convergent if the generalizedFourier coe±cients of the forward operator

do not satisfy the discretePicard condition [52]. Also when the residual is very

small, the L-curve fails to converge[53].

3. The generalizedcross-validation method (GCV) wasdeveloped by Golub et al.

[54]. It is basedon the minimization of the predictive error and has a similar

derivation to the oneof the unbiasedpredictive risk estimator (UPRE) method

[46]. Unlike UPRE, GCV does not require knowledgeof the statistics of the

noise. Becausethe ideal data is not available, an estimateof the error is derived

from the measurements as follows: for a ¯xed regularization parameter®, one

point of the measureddata is removed from the measurements, and its value is

estimatedusing the modi¯ed forward model and the rest of the measurements,

with a corresponding estimation error. This procedureis repeatedfor all points

in the measurements data set. The predictive error is de¯ned as the average

of the estimation errors for a ¯xed ®. The optimum value of ® is the one that

minimizesthe predictive error becauseit can discriminate better the data from

the noisein the measurements. The GCV estimator for the predictive error can

be calculatedas

G(®) =
jjy ¡ Ax̂(®)jj 2

2

[trace(I ¡ AT A# (®)A)]2
(3.28)
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whereA# is the linear operator relating y and x̂(®), i.e., x̂(®) = A# y.

The optimum parameter is the one that yields the the minimum value of the

GCV curve. An exampleof the appearanceof a GCV curve is shown in Figure

3.4.This parameterselectiontechniquedoesnot su®erfrom the limitations that

that the L-curve has. However, it has its own drawbacks: the GCV curve can

have a very °at minimum, which makes it di±cult to choosean appropriate

parametervalue. Also, GCV has beenshown not to convergeto the optimum

parameterwhen the noiseis correlated to the signal [50]. That is not the case

for the L-curve, provided that the noisedoesnot satisfy the Picard condition.

Additionally , its calculation is computationally expensive comparedto other

parameterselectiontechniques.
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Figure 3.4: GCV method

This concludesthe discussionof the inverseproblemsformulation for monostatic

pulse-echo imaging. An overview of inverseproblemstheory wasgiven, including the

issueof noiseampli¯cation. Regularization was introducedas a method to stabilize

the inverseproblem and ¯nd meaningful solutions. Among the di®erent techniques,

lk
k norm Tikhonov regularization and its implementation weredescribed. Also, tech-

niquesfor regularization parameterselectionhave beendiscussed.The next chapter

will show through simulations the result of applying thesetechniquesto pulse-echo

imaging.
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CHAPTER 4

SIMULA TIONS

Several simulations wererun in order to test the performanceof the reconstruction

using regularization approaches. The simulated data were generatedusing Field I I

and correspond to using focusedtransducersin a medium with speedof soundequal

to 1500m/s. The simulated transducershave a central frequencyof 6 MHz (which

correspondsto a wavelengthof 250¹ m) and a focal distanceof 19mm. The sampling

frequencywas set to 60 MHz. Other parameterssuch as the bandwidth, the focal

number and the distancebetweenthe ROI and the focus werenot held constant for

all simulations.

The spectrum of the transmit-receive impulse responseof the transducer, P(f ),

was modeledas

P(f ) = f exp
µ

¡
2:9(f ¡ ·f 0)2

BW 2

¶
(4.1)

where

f = frequency

f 0 = central frequencyof the transducer

BW = -3 dB transmit-receive bandwidth of the transducer

The variable · in Eq. (4.1) is usedto properly adjust the -3dB frequencyband

of the transducer. For the present work, · rangedbetween0.9 and 1.

The transducerwas apodized to smooth the variations of the acoustic¯eld. The

apodization function A(r ) was chosento be a Hann function de¯ned as

A(r ) = ² + (1 ¡ ²) cos
³ ¼r

D

´
(4.2)

where

r = distanceto the center of the tranducer

D = diameter of the transducer

The variable ² in Eq. (4.2) is used to control the level of apodization for the

surfaceof the transducer. For the present work, ² was set to be 0.1.
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The ROIs usedfor the simulations consiston two-dimensional,squareregionsof

3 by 3 mm. The ROIs were divided into two concentric subregionswith the inner

onehaving a diameter of 1 mm.

Figure 4.1: Schematic diagram of the region of interest for the simulations

The subregionswill befrom now on referredasRegion1 andRegion2, asshown on

Figure 4.1. The ROIs werediscretizedusinga grid of a quarter of a wavelength( ¸
4 ) at

the central frequency, resulting in imagesof 49 by 49 pixels. A total of 750scatterers

were distributed on the ROIs, resulting in a scatterer density of approximately 2.5

scatterersevery eight pixels. Becausethe highest bandwidth and the smallest focal

number used are 100%and 1, respectively, the smallest resolution cell used in the

simulations corresponds roughly to 0:5¸ 2. This means that a minimum scatterer

density of 2.5 scatterersper resolution cell is guaranteed for every simulation. This

is above the limit of 2 scatterersper resolution cell determined in [55] by Tuthill et

al. for sparsescatterer density in speckle basedROIs. The minimum value of 2.5

scatterersper resolution cell was also chosento avoid using a large grid sizewhich

would increasethe computation time of the algorithm.

Two ROIs were used for the simulations: the ¯rst with Region 1 containing

scatterersof peak re°ectivit y amplitude 10 times higher than the onesin Region2,

and the secondwith Region1 containing scatterersof peak re°ectivit y amplitude 10

times lower than the onesin Region2. For both ROIs, the samespatial distribution of
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the scattererswas used. The re°ectivit y amplitudes of the scatterersvary uniformly

in an interval of 20% around the maximum amplitude value for each region. Both

ROIs are shown in Figure 4.2.
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Figure 4.2: ROIs usedfor the simulations

Zero-meanGaussiannoisewasusedto contaminate the data. The signal-to-noise

ratio (SNR) for the present study is de¯ned as

SN R = 10log
µ

jjgjj 2
2

jjwjj 2
2

¶
(4.3)

where

g = pulse-echo data signal (without noise)

w = additive noise

The samerealization of noisewas scaledin order to changethe SNR so that a

fair comparisonof the e®ectof several parameterscan be performed.

The normalizedmeansquareerror (MSE) wasusedin order to numerically eval-

uate the performanceof the reconstruction. The normalizedMSE is de¯ned hereas

the squareof the l2
2 norm of the reconstruction error normalizedwith respect to the

squarel2
2 norm of the desireddata:

M SE =
jjx ¡ x̂jj 2

2

jj xjj 2
2

(4.4)

where

x = ideal re°ectivit y distribution
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x̂ = reconstructeddata

As a complement, the reconstructed images using conventional imaging tech-

niques(B-mode and SAFT imaging) togetherwith the regularization reconstructions

are also shown for selectedvaluesof SNR of 40, 30, and 20 dB. All the imagesare

shown in a logarithmic scalewith a dynamic rangeof 40 dB.

Several regularization techniqueswere introduced in Chapter 3. For the present

work, generalizedTikhonov wasselectedas the regularization method. This method

hasseveral properties that makesit a reasonablechoice:

1. It is a genericframework that allows to regularizean inverseproblem in a very

°exible way.

2. It is computationally easyto implement.

3. It allows the useof well studied automatic regularization parameter selection

techniquessuch as GCV and the L-curve.

During the rest of this chapter, the e®ectof di®erent parameters involved in

the reconstruction processwill be explored in order to understand the feasibility of

regularizationreconstructionapplied to pulse-echo imaging. Two typesof parameters

will be explored:

1. Regularization parameters (discussedin Section 4.1). This includes all the

parametersinvolved in solving the regularizedinverseproblem formulation of

Eq. (3.23) for a ¯xed forward model matrix A.

2. Imaging system parameters. That is, the parametersthat a®ectthe forward

model used for the image reconstruction. Depending on the stabilit y of the

forward model, the regularizationprocedurewill bemoreor lesse®ective. Three

imaging systemparameterswereexploredfor the present work:

² The relative pulse-echo bandwidth of the transducer (discussedin Sec-

tion 4.2), de¯ned as in [42] to be the ratio of the -3 dB transmit-receive

bandwidth of the transducerand its central frequency.

² The f # of the transducer(discussedin Section4.3), asde¯ned in Eq. (2.5).

² The distancebetweenthe region of interest (ROI) and the focal depth of

the transducer (discussedin Section4.4).
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4.1 Choice of the Regularization Parameters

The appropriate choice of regularization parameters,as discussedin Chapter 3,

is crucial in the performanceof regularization reconstructions. As shown in Eq.

(3.23), there are four parametersthat have to be chosenfor generalizedTikhonov

regularization. In the present section,the criteria for the selectionof each parameter

will be discussed.

4.1.1 Choice of regularization matrix L

The regularization matrix L can be chosen as any stabilizing linear operator

that includes a priori knowledge of the solution of the problem. In the caseof

speckle-basedimages,for which the re°ectivit y distribution hasa random nature by

de¯nition, the optimum choiceof L is not clear. The most natural way of regularizing

an inverseproblem is to remove the more unstable eigenvaluesas the level of noise

in the data increases.This is the idea behind TSVD regularization (seeSection3.4).

Regardlessof the underlying structure of the desireddata, this approach keepsonly

the data that can be consideredas reliable, that is, the data that can be extracted

from stable eigenvectorsof the data space.Such behavior can also be accomplished

by using Tikhonov regularization with L equals to the identit y matrix, as it was

shown in Eq. (3.17). This choiceof L also¯lters the unstableeigenvaluesbut usinga

secondorder ¯lter insteadof a boxcar ¯lter as in the caseof TSVD. The equivalence

of the behavior is well documented in the inverseproblemsliterature [45].

4.1.2 Choice of the o®set parameter ¯

The parameter ¯ , as explained in Section 3.6, is a small constant introduced

as an o®setto allow di®erentiation of the constrained least mean squares(LMS)

equationfor normsof the cost function smallerthan or equalto 1. In order to achieve

uniformit y not only on ¯ but also in the regularization parameter ®, the forward

model matrix and the simulated data were normalized by making their norm equal

to 1. With thesenormalizations, there is a rangeof ¯ for which the reconstructions

were somewhatinsensitive to the speci¯c value of this parameter. For larger values

of the regularization cost norm, the sensitivity to the value of ¯ decreases.A value

of ¯ = 10¡ 7 was empirically selectedfrom a set of simulations. This value is small

enoughso that the biasedintroducedin the reconstructionsis not signi¯cant.
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4.1.3 Choice of the regularization cost norm k

ClassicalTikhonov regularization usesa quadratic cost norm (k = 2). As it was

discussedin Chapter 3, this particular choice has the advantage of having a linear

solution but is not necessarilyan optimum choice in terms of performance. The

regularization cost norm k was chosenby inspection of the e®ectof the norm on

samplereconstructions. An exampleof the visual appearanceof the reconstructions

with valuesof k of 0.5, 1, and 2 is shown in Figure 4.3. The simulation corresponds

to a reconstructionusinga transducerwith a bandwidth of 100%,f # of 1 and ROI at

the focus,with a SNR of 20 dB. This particular valueof SNR waschosenbecausethe

di®erencein behavior is clearer when the noise in the measurementsis higher. The

impact of the value of k can be summarizedas follows:

² From Figure 4.3(d), for k = 2 the solution looks oversmoothed. Consistent

with Eq. (3.17), with this choice of k the eigenvectors corresponding to the

unstable eigenvalues are ¯ltered in order to control the e®ectof the noise.

Becausethe unstable eigenvalues are the onesthat carry the high frequency

information of the image, ¯ltering them causesa distributed blurring which

results in oversmoothed imageswhen noiseis present in the data.

² From Figure 4.3(b), for k = 0.5 the solution looks sparse; i.e., there is no

smoothing e®ecton the reconstructedimageat the costof loosingmany features

from the original image. There is a small set of points that stand out from the

rest of the pixels in the image and the overall reconstruction seemsto have

lost its contrast. This e®ectcan be explainedbetter starting from Eq. (3.22).

The regularization cost function when L is chosento be the identit y matrix

simpli¯es to jjxjj k
k , that is, the lk

k norm of the data to be recovered. From a

¯rst order analysisthis will be accomplishedwith smallervaluesof the norm of

x. Becausethe minimization equation is no longer linear, the eigenvaluesare

not ¯ltered by only taking in considerationits particular numerical values(i.e.,

by using static ¯ltering). The ¯ltering processbecomesadaptive, extracting

information even from the unstable eigenvalues. This is the reasonwhy the

solution is not oversmoothed. As it was graphically shown in 3.2 that smaller

values of k enforcea larger emphasisof the cost function. In this case,the

sparsity implied in the l k
k term will be larger when k is smaller.
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(b) k = 0.5 (MSE = 76%)
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(c) k = 1 (MSE = 55%)
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(d) k = 2 (MSE = 99%)

Figure 4.3: E®ectof di®erent choicesof regularization cost norm k

² From Figure 4.3(c), for k = 1 a point of equilibrium betweenthe aforementioned

behaviors is achieved. The solution is somewhatsparseas in the caseof k =

0.5and su®ersfrom a slight blurring which however addsvisual cohesionto the

image. The normalizedMSE in the reconstructionwith k = 1 (55%) is smaller

than in the caseof k = 0.5 (76%) and k = 2 (99%). This value of k is the one

that will be usedfor the rest of the simulations in the present work.

4.1.4 Choice of the regularization parameter ®

The most critical parameterto bechosenis the regularizationparameter®, which

gives the relative weight betweenthe least mean square(LMS) term and the regu-

larization cost function in Eq. (3.22). The e®ectof having a ¯xed value for ® is

shown in Figure 4.4, which shows the MSE (calculated from the data in linear scale)

as a function of the SNR corresponding to the reconstruction of the re°ectivit y dis-
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tribution of Figure 4.2(b) from pulseecho data from a simulated transducerof 100%

bandwidth, f # of 1 and ROI at the focus. For each value of ®, the error starts on a

certain level whereit remainsmoreor lessconstant until somethreshold value of the

SNR is reached. After that, the error appears to increasealmost linearly with the

SNR. Smallervaluesof ® have lower valuesof MSE for low levelsof noise(high SNR)

but alsolower SNR thresholds. That is, the best choiceof ® is data-dependent. As a

complement, the reconstructedimagesfor selectedvaluesof ® of 10¡ 2 and 10¡ 1 and

SNRsof 50 and 20 dB are alsoshown.

By ¯xing L, k, and ¯ , a family of solutions parametrized by ® is de¯ned. As

shown in Figure 4.4, the selectionof the solution that extracts the largestamount of

informations from the data and that is not largely distorted by noisein order to get a

meaningfulimageis of great importancewhendealingwith regularization. In Section

3.7 two techniquesfor the automatic selectionof the regularization parameter® were

introduced: the L-curve and GCV. The performanceof both criteria were explored

for the present work and the results will be shown for each of the simulations that

follow in the rest of this chapter.

The values of ® were analyzed on the interval [10¡ 4; 101]. This interval was

determined through simulations. For ® < 10¡ 4 the regularization is too weak and

noisepropagatesto the reconstructionseven for an SNR of 100dB. For ® > 10, the

regularization constraint term was large enoughfor the MSE in linear scaleto reach

asymptotic limit of 100%derived from Eq. (3.18). ® wasdiscretizedusing a uniform

exponential grid with step sizeequal to 0.25,that is, ® = f 10¡ 4, 10¡ 3:75, 10¡ 3:5 : : :

100:75, 101g.

In conclusion,for the present work the following parameterswere chosenas fol-

lows:

1. The regularization matrix L will be the identit y matrix.

2. The o®setparameter ¯ will be 10¡ 7.

3. The regularization cost norm k will be 1.

4. The regularization parameter® will be chosenusing the L-curve and GCV on

the interval [10¡ 4; 101].
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(c) ® = 10¡ 1

(1) SNR = 50 dB
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(d) ® = 10¡ 2
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Figure 4.4: E®ectof di®erent choicesof regularization parameter®
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For a ¯xed set of parameters,the tolerancefor the iterativ e processof Eq. (3.25)

was set equal to 0.001%. The factor ° was set equal to 1 becausefor ° · 1 the

algorithm had a slower convergencerate with no observable reduction of the MSE.

4.2 E®ect of the Bandwidth of the Transducer

The e®ectof the bandwidth of the transducer is analyzedby reconstructing im-

agesfrom data corresponding to scanning the ROIs with three simulated focused

transducerswith relative transmit-receive bandwidths of 100%,50%, and 33%, re-

spectively. The pulsesin both time and frequencydomain are shown in Figure 4.5.

Thesesimulations wereperformedwith an f # of 1 and thr ROI at the focus. Figure

4.6 shows the plots of the MSE asa function of the SNR for the regularization recon-

structions. Figures4.7 and 4.8 show the regularization reconstructedimagesselected

using the L-curve for each simulated transducerfor selectedvaluesof SNR of 40, 30,

and 20 dB.

Several observations canbe madefrom the resultsof this simulations. First, from

Figure 4.6 it is clear that the error in the reconstruction increasesmonotonically

with the level of noisein the measurements, as expected. This can also be visually

veri¯ed by analyzing the quality of the imagesin Figures 4.7 and 4.8; the images

corresponding to higher levels of SNR represent better the underlying re°ectivit y

distribution.

Second,it can be seenthat the quality of the reconstruction degradesas the

bandwidth decreases.For example,for the secondre°ectivit y distribution, for a SNR

of 30 dB the normalizedMSE is in the rangeof 20-30%for a bandwidth of 100%but

the MSE increasesto 90% when the bandwidth is 33%. This behavior is expected

becausethe forward model matrix is a spatially variant convolution kernel, which is

more stable if its spatial frequencycontent is larger. Reducingthe bandwidth of the

transducerwill increasethe axial duration of the impulse responseand hencereduce

the spatial frequencycontent in the axial direction. This will reducethe stabilit y of

the forward model and hencewill increasethe error of the inversion algorithm. It

can also be noticed that the e®ectof reducing the bandwidth from 100%to 50% is

very severe. This shows that the algorithm is very sensitive to the frequencycontent

of the the ultrasonic pulse.
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Figure 4.7: Test 1 - Reconstructedimagesfor ¯rst re°ectivit y distribution selected

using the L-curve
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Figure 4.8: Test 1 - Reconstructedimagesfor secondre°ectivit y distribution selected

using the L-curve

45



Third, the performanceof the L-curve and GCV can also be analyzedfrom the

error curvesin Figure 4.6. For the reconstructionspresented in this work, both tech-

niquesseemto give comparableresults. A statistical analysisshould be performed

in order to stablish which technique has a better performancefor this inverseprob-

lem. For a large range of SNRs, both techniques give reconstructionswith MSEs

closeto the minimum attainable. Becauseof the similarit y in the results, only the

reconstructedimagesselectedusing the L-curve will be shown in the present work.

Fourth, it can be seenfrom the reconstructedimagesfor SNR below 30 dB start

to loosethe low amplitude pixels. This is also consistent with the discussionof the

e®ectof the regularization norm in Section 4.1. Becausethe chosenregularization

method will penalizesolutionswith larger norms, the pixels of lower amplitudes will

be discardedbeforethe pixels of higher amplitudesbegin to be penalized.This e®ect

is particularly noticeablein Figure 4.7 when the SNR drops from 30 to 20 dB.

4.3 E®ect of the Focal Num ber of the Transducer

Just like the axial resolution of the systemis directly proportional to the band-

width of the transducer, the lateral resolution at the focal region depends on the

f # of the transducer as given by Eq. (2.8). Hence, increasingthe f # should have

an e®ectsimilar to decreasingits bandwidth. To test this hypothesis, another set

of simulations were performed with two simulated transducerswith f # of 2 and 3,

respectively, and the results are comparedwith the onesfor a f # of 1. The simula-

tions wereperformedwith a bandwidth of 100%and the ROI at the focus. The MSE

versusSNR curves are shown in Figure 4.9 and reconstructedimagesare shown in

Figures4.10and 4.11.

Someimportant observations canbederived from the resultsof thesesimulations.

First, it canbe noticed from visual inspection that the B-mode imagesin Figure 4.11

for f # s of 2 and 3 do not show a distinction betweenRegion 1 and 2. This is not

the casefor the imagesreconstructedusing regularization. This is a clearexampleof

the possibility of extracting more information from the pulse-echo data than the one

that can be obtained using B-mode imaging.

Second,it can be seenthat the e®ecton the performanceof the increasein focal

number is not nearly as critical as the one of the reduction of the bandwidth. For

example,for the secondre°ectivit y distribution with a SNR of 30 dB, the normalized
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Figure 4.10: Test 2 - Reconstructedimagesfor ¯rst re°ectivit y distribution selected

using the L-curve
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(4) Regularization reconstructions,SNR = 20 dB

Figure 4.11: Test2 - Reconstructedimagesfor secondre°ectivit y distribution selected

using the L-curve
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MSE increasesfrom 20-30%to 45%when the f # increasesfrom 1 to 3. This is to be

comparedagainst the MSE of 90% for the caseof a bandwidth of 33% discussedin

Section4.2. There is a coupleof observations that can explain this behavior. First,

the frequencycontent of the forward model is mostly determinedby the spectrum of

the acousticpulse. Thus, the increasein f # doesnot a®ectthe frequencyresponse

of the forward model as severely as the reduction in the bandwidth. Second,the f #

a®ectsthe axial sizeof the focal region, as it was shown in Eq. (2.7). Even though

the lateral resolution is worse,the coe±cients of the forward model matrix are more

uniform with variations of depth for an increasedfocal number, and hencethere is a

counteracting e®ectthat might reducethe deterioration of the reconstructedimages.

Third, Figure 4.9 shows that there seemsto be an stagnation in the MSE as the

focal number increases. The curves for f # s of 2 and 3 overlap, but the curve for

an f # of 1 is separatedfrom the other two curves except for values of SNR lower

than 20 dB for the ¯rst re°ectivit y distribution. This shows that the e®ectof the

f # on the MSE is not monotonic. This e®ectshould be further studied. Finally,

the results shown here are more qualitativ e than quantitativ e, that is, given that

only one noiserealization was usedfor each ROI, the contribution of this results is

showing the trends in the reconstructions.Future work should involve reconstructing

di®erent ROIs with several noiserealizations in order to have a more representativ e

quantitativ e description of the problem.

4.4 E®ect of the Distance of the ROI to the Focus of the
Transducer

B-mode imageswhen the ROI is out of focussu®erfrom lossin spatial resolution

due to the beamspreading,as it was discussedin Section2.1. Hence,it is of special

interest to analyzethe e®ectof the distancebetweenthe ROI and the focus of the

transducer. For this purpose, another set of simulations was performed by using

transducerswith a bandwidth of 100%and an f # of 1, with the ROI at 0, 2.5 and

5 mm beyond the focus of the transducer. The -6 dB depth of focus is given by Eq.

(2.7); becausȩ = 0.25 mm and f # = 1, the depth of focus for thesesimulations is

approximately 1.8 mm. This meansthat targets beyond 1 mm away from the focus

lie outside the focal region. The reconstructedimagesare shown in Figure 4.12 for

conventional imaging methods (B-mode and SAFT). The MSE curvesare shown in
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Figure 4.13and the regularizationreconstructionsareshown in Figures4.14and 4.15.

Someobservations canbemadefrom the results. First, it canbeseenfrom Figure

4.12 that the B-mode imagesare of very poor quality when the ROI is beyond the

focusof the transducer,asexpected. SAFT processingis able to improve the quality

of the imagewhen comparedto the unfocusedB-mode images,but only to a limited

extent becauseof the presenceof sidelobes. This phenomenonwas explored in the

theoretical development of SAFT in Section 2.2.1. Also, in order to successfully

apply SAFT algorithms, the sampling aperture should satisfy Shannon's theorem

[38], which states that there is a minimum coverageof the ROI neededin order

to have enoughdata and avoid aliasing. Becausethe number of A-Scanswas held

constant for all cases,Shannon'stheorem is not satis¯ed for large distancesand the

intensity level and sizeof the sidelobesincrease.For the imagecorresponding to the

secondre°ectivit y distribution there is not a cleardistinction betweenthe concentric

regionsthat conform the ROI. The distortion due to the sidelobesincreaseswith the

distancebetweenthe ROI and the focusof the transducer.

Second,the e®ectof the distancebetweenROI and the focus of the transducer

on the MSE is not as critical as the e®ectof the bandwidth as it can be seenfrom

Figure 4.13. Taking again as a referencethe secondre°ectivit y distribution and

an SNR of 30 dB, the MSE increasesonly from 20-30%to 35%. In fact, there is

an overlapping of several of the MSE curves shown in Figure 4.13. For the second

re°ectivit y distribution, there is an averageseparationof 5-10%in the MSE achieved

when the ROI is at the focus compared to the unfocusedcases;the MSE curves

for 2.5 and 5 mm however are overlapping. In fact, for the seconddistribution,

there are valuesof the SNR below 30 dB for which a smaller MSE is achieved for

a distance of 5 mm than for 2.5 mm. This can be explained becausethe pulse-

echo data corresponding to the unfocusedcasescontain information on the frequency

domain comparableto the onefrom the focusedscenario.The frequencyinformation

is contained on the pulse-echo data but spreadedover the frequencyregionof support

of the imaging system. SAFT is only able to retrieve the information to a limited

extent. The reconstructionusing regularization appearsto be much more e±cient in

the task of extracting the information from the pulse-echo data. The limiting factor

on the performanceof the reconstructions,as in the other simulations, is the amount

of noisein the measurements.
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Figure 4.12: Test 3 - Conventional imagesfor out of focuscases
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Figure 4.14: Test 3 - Reconstructedimagesfor ¯rst re°ectivit y distribution selected

using the L-curve
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Figure 4.15: Test3 - Reconstructedimagesfor secondre°ectivit y distribution selected

using the L-curve
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This concludesthe presentation of the results of the simulations performed for

the present work. The e®ectof parametersof both the regularization algorithm and

the imaging system(bandwidth, f # and distancebetweenROI and the focus of the

transducer)wereanalyzedto explorethe feasibility and e®ectivenessof regularization

reconstruction. In the next chapter, a closing discussionabout the results will be

presented, together with suggestionsfor future work directions.
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CHAPTER 5

CONCLUSIONS AND FUTURE W ORK

5.1 Conclusions

The performanceof conventional imagingtechniquessuch asB-modeand SAFT is

mainly limited by the sizeof the resolutioncell of the imagingsystem. For monostatic

imaging with a focusedtransducer,the spatial resolutiondependson the wavelength,

bandwidth and f # when the ROI is at the focus. When the ROI is out of focus, the

lateral resolution becomesworsebecauseof the beam spreadingdue to di®raction.

The goal of this study was to analyze if regularization approaches are a feasible

alternative to conventional imaging techniques.

It was found from the simulations that more information can be extracted from

the pulse-echo data using inverseproblemsand regularization approachescompared

to conventional techniques when the SNR is high. However, as the noise in the

measurements increases,the MSE of the reconstructionsalsoincreasesand the quality

of the reconstructiondegradesbecauseof excesive ampli¯cation of the measurement

noiseduring the inversionprocess.This mechanismof imagedistortion is not present

in conventional imaging techniques.

The sizeof the resolution cell of the imaging systemalso has an impact on the

performanceof regularization techniquesby determining the lower threshold for the

SNR for which theseapproaches yield an image of better quality. This is a direct

result of a lower spatial frequencycontent of the forward model which results in a

more unstable inverseproblem. A larger bandwidth result in better performanceas

measuredby the MSE for ¯xed SNR. The f # and the distance between the ROI

and the focusdo not necessarilyhave a monotonic e®ecton the quality of the recon-

struction as measuredby the MSE. The optimum reconstruction for the simulations

occurred for a bandwidth of 100%,f # of 1 and ROI at the focus. For thesesettings

and for valuesof SNR below 20 dB, several of the image featureswere lost during

the reconstructionprocessin order to control the distortion due to the noise.
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From the simulation results in Chapter 4, it was concludedthat the bandwidth

has the largest e®ecton the MSE, followed by the f # . The distance between the

ROI and the focusof the transducerhad the lowest e®ect.In fact, the corresponding

MSE curvesoverlap for low valuesof SNR.

5.2 Future Work

5.2.1 Statistical analysis of the problem

As it has been stated in Chapter 4, it is of special interest to perform several

reconstructionswith the samesettingsusedin the present work, usingdi®erent noise

realizationsand possiblydi®erent ROIs with the samescattererdensity per resolution

cell, in order to have an statistically meaningfulevaluation of the e®ectof the f # and

the distancebetweenthe ROI and the focus.

5.2.2 Changes in the simulation setup

The simulation setupusedfor this work wasonly chosenfor simplicity in the for-

mulation of the problem, in order to understandthe limitations of the inversioprocess

using regularization techniques. There are two factors that limit the e®ectivenessof

the inversion:

1. The noisein the measurements. In order to discriminateand better compensate

for the noise,moremeasurements canbeusedfor the sameamount of unknowns.

This can be achieved in at least a coupleof ways:

² The averageof several measurements with the samecon¯guration usedin

the present work can be usedinsteadof a singleset of measurements. For

uncorrelated,zero-meanadditive noisethat would result in a reduction of

the noisevarianceand hencean improvement on the SNR. However, this

approach hastwo drawbacks: ¯rst, there is an increment in the acquisition

time, and second,in certain imaging situations (such asbiomedical imag-

ing) the ROI is not stationary, so both the noiselessdata and the noise

changewith each measurement.

² Insteadof usinga monostaticcon¯guration, morethan onereceiver canbe

usedfor each transmission[56],[57]. This has the advantage of providing

more measurements for every transmission. Related research topics are
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the determination of the number and spatial distribution of the receivers

neededto achieve an optimum reconstruction.

2. The sizeof the resolutioncell. From the analysisin Chapter 4 it wasconcluded

that the bandwith is the limiting physical factor in the reconstructions. To

overcomethis, a seriesof transducerswith di®erent frequency bands can be

usedas in [20].

5.2.3 Changes in the reconstruction algorithm

The choiceof the regularization algorithm hasalsoan impact on the performance

of the reconstructions. Even by ¯xing the regularization method to be generalized

Tikhonov, more variants can be explored. For example,region-basedregularization

cost terms can be added to the minimization problem usedfor the reconstructions.

An expected trade-o®is a decreasein the MSE versusan increasein the contrast

of the reconstructionsfor low values of SNR when comparedto the regularization

cost usedfor this work. A combination of region-basedand identit y cost terms have

beensuccessfullyused in radar imaging [25]. An inmediate problem in using more

than one regularization cost term is the needto determine more than one regular-

ization parameter ®, so that multidimensional versionsof the parameter selection

techniquesare needed.This topic hasbeenaddressedin other works, such as[58] for

multidimensional GCV and [59] for multidimensional L-curve.

5.2.4 E®ect of the grid

With every discretization problem there is a tradeo® involving the size of the

grid to use. A very coarsegrid will result in a bad representation of the continuous

measured̄ eld and the ¯t to the measureddata will bepoor. There is an improvement

as the grid becomes̄ ner up to a certain limit, becausethe measureddata doesnot

contain enoughinformation to resolve featuresbeyond a certain limit. As a result,

the inverseproblem becomesmore unstablebecauseit becomestoo overdetermined.

Hence,there existsan optimum samplinggrid that dependson the forward model. A

recent exampleinvolving grid sizeselectionin inverseproblemsusing regularization

can be found in [60].
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5.2.5 Matrix-free solution to the problem

A problem with the inverseproblem formulation usedin the present work is the

computational costof the algorithm. The simulations of Chapter 4 wererun on a dual

processorOpteron 248computerwith a 2.26GHz clock and 4 GB of memoryrunning

on Linux FedoraCore2. For the 49by 49imagesusedin the simulations, the inversion

took an averageof 60 iterations to convergefor ¯xed regularization parameters.The

inversionalgorithm wascodedon Matlab version6.1. Each iteration took 3.8seconds

for a total averagetime of 228secondsusing 7% of the available memory. However,

the computation time and memoryusageincreasewith the number of unknowns. For

an imageof n by m pixels, the sizeof the matrices usedfor the inversionprocessis

(nm)2. Doubling the size of the image in both dimensions,that is, reconstructing

an imageof roughly 100 by 100 pixels, would demandan increasein the sizeof the

matricesby a factor of 16. Even though the sparcity of the inverseoperator increases

with the sizeof the ROI due to the ¯nite sizeof the resolution cell, it can be easily

seenthat a matrix formulation is not e±cient in term of memorymanagement, which

imposesa limit on the number of unknowns that can be solved. This problem is of

special importance becausefor real imaging scenariosthe ROI is three-dimensional,

which increasesthe dimensionality of the problem. To overcome this limitation,

regularized iterativ e matrix-free formulations can be used. Distributed approaches

for large matrix-free equation systemshave beenreported to solve for even millions

of unknowns [61]. Relatedresearch topics involve the study of the convergenceof the

iterativ e algorithm as in [62].

5.2.6 Changes in the forw ard mo del

The e®ectof modelling errors have also to be considered.Several simpli¯cations

wereassumedfor the present work, i.e., the speedof soundwasassumedto be homo-

geneous,attenuation and non-linear propagation were not considered,and multiple

re°ections were neglected. In order to apply this algorithm in a real imaging sce-

nario, the impact of all of theseitems have to be studied. More than quantifying the

distortion that this simpli¯cations generatefor real data, it is of special interest to

incorporate them into the forward model. For example,it is a well known fact that

the quality of SAFT and array imagingdegradesbecauseof phaseaberration [63] due

to inhomogeneitiesin the speedof sound. The feasibility of using inverseproblems

approachesto solve for this particular issueis a relevant topic of future research.
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