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CHAPTER 1
INTR ODUCTION

1.1 Conventional Ultrasonic Imaging Approac hes

The useof acousticwavesfor imaging purposesgoesbad to the 1910swhen Paul
Lavengin demonstratedthe useof the sound navigation ranging (sonar) method [1].
The key conceptfor acousticimaging is that an acousticwave propagatingthrough a
medium is scatteredwhen inhomogeneitiesare encouriered. Thus, inhomogeneities
inside a volume can be detectedby radiating it with an acousticwave and measuring
the scatteredenergywith sensordocated in di®eren locations. Nowadays, acoustic
imaging is usedfor sewral applications including nondestructive evaluation (NDE)
for the analysisof di®erem materials sud asconcrete[2], steel[3] and evenwood [4];
and biomedicalimaging for intravascular[5] and dermatological[6] applications and
for cancerdetection [7], amongmany others|[8].

Acoustic imaging systemsuse transducers,devicescapableof both transmission
and reception of acoustic waves. On the simplest con guration, a single-elemen
transducer is placed at a certain position, on which it transmits an acoustic wave
and then receiwes the badscattered echoes. This imaging modality is known as
monostatic pulse-ebo imaging.

Becausea transducerhasa nite size,the radiation pattern su®ersfrom di®rac-
tional e®ects.The point spreadfunction (PSF) of the imaging system[9] is de ned
as the 2-D impulse responseof the system,i.e., the image that would be formed if
only onein nitesimal scattererwere presett in a particular position in the region of
interest. A typical point spreadfunction consistson a main lobe and sidelobes. The
shape and amplitude of this function determine the quality of the imagesthat can
be formed with a particular imaging system.

The quality of an acousticalimaging systemis determinedby two principal quan-
tities known as spatial and cortrast resolution. Spatial resolution is the ability of
the systemto discriminate two targets of equal amplitude that are closetogether.



When dealing with 2-D images, the spatial resolution is de ned independerily for
both axes: the axial resolution is related to the ability to discriminate two targets
closetogether on the direction of propagation of the wave and dependson the pulse
duration, whereasthe lateral resolution is de ned for the direction transverseto the
propagation of the wave and depends on the di®raction pattern of the transducer
that is used. The two points will be resohed if two peakscan be discerniblein the re-
sulting image;the criterion to determinethe resohability of the peaks,however, can
be arbitrarily established,which results in seweral de nitions for spatial resolution
[9]. The Rayleigh criterion, for example,is de ned as the separation betweentwo
copiesof the point spreadfunction that would result on the peak of the mainlobe of
onelanding onthe rst zeroof the other. Another de nition is the Sparrow criterion,
which is de ned asthe minimum separationbetweentwo copiesof the point spread
function for which the dip that is formed halfway from the peaksis down in intensity
by a factor of two [10].

Contrast resolution is the ability to resole two areasof di®eren brightnesson
the image. Here the main limitation is the amplitude of the sidelobes of the point
spreadfunction. Considerthe caseof a cystic target of low re°ectivity surrounded
by a region of high re°ectivity scatterers. When the mainlobe is over the cyst, the
sidelokesare partially over the surrounding regionswhich do re°ect the sound more
ezxciently, and henceit will appearthat there wasre®ection from insidethe cyst. The
higher the level of the sidelokes,the more sewerethis phenomenonwill be. If the cyst
is small enoughthen it can be completely lled by the re°ections of the surrounding
regions. It shouldbe noted that a wide mainlobe will alsoshadav regionsof negative
cortrast.

In summary, a good imaging systemhas a very small mainlobe and sidelolkes of
a very low level. Howewer, there are se\eral factors that can a®ectthe PSF of an
acousticimaging system.

Onefactor that a®ectsthe width of the mainlobe is the wavelength of the acous-
tic wave, which is inversely proportional to its frequency This is why ultrasonic
waves(acousticwaveswith frequenciesabove the audible range) are usedfor medical
imaging, where the size of the discortinuities can be in the range of micrometersor
below. Howewer, attenuation alsoincreaseswith frequency[11], thus leadingto one
a well-known trade-o®for this kind of applications: spatial resolution versusdepth



of imaging.

Transducerscanbe constructedusingdi®eren geometriego changeits di®raction
pattern. The rst type of transducersthat was used was unfocused (such as the
circular piston geometry[12]) and did not have good spatial resolution at any point
in the image. Soon they werereplacedby sphericaltransducers[10], a geometrythat
had a radiation pattern that wasfocusedon a small region of spacecalled the focal
region. Even though the lateral resolution is greatly improved on the focal region, it
actually worsenseverywhereelsedue to the spreadingof the beam. Becausea more
focusedtransducerhasa smallerfocal region, for this geometrythere is a tradeo®of
high resolution on the focal region versusthe size of the regionthat can be imaged.

It is clearthat the key to improve the resolution of a systemis to achieve focus
throughout the region of interest (ROI). When usinga monostatic con guration, this
can be accomplishedusing synthetic aperture focusing techniques (SAFT), which
consistof conmbining the received signalscorrespnding to di®erern scanningpositions
in order to construct a syrnthetic beam. The problem of this type of technique is the
generation of high level sidelobes which compromisethe contrast resolution; this
problem can be reducedusing apodization at the costof sacri cing lateral resolution
[13.

The bestquality acousticimagesare achieved using array imaging[14], for which
more than onetransduceris usedto transmit and receiwe acousticwaves. The trans-
ducersthat are grouped to form the array are known as elemeits, and they can be
arrangedin one,two or three dimensions.When the elemens transmit together, the
overall di®raction pattern is modi ed and the resulting mainlobe is narrower than the
one correspnding to the individual elemens. A phasedarray is one for which the
elemerts can be red individually. This is especially important becauset allows to
focusthe transmitted eld on di®eren portions of the ROI by applying appropriate
delays to ewvery elemen. Sideloke levels can be controlled by apodizing the array
elemens. Also, becausemore power is transmitted into the ROI, the signal-to-noise
(SNR) level of the resulting imageis improved.

Howewer, phasedarray imaging has its own limitations. One of them is the
appearanceof grating lobes, which are due to spatial aliasing, i.e., when the certer-
to-certer spacingbetweenadjacen elemens (known as elementpitch) that conform
the array do not satisfy the Nyquist sampling criterion. Grating lobesdo not exist



if the elemen pitch is lessor equal than a wavelength if no steeringis used, and
lessthan half a wavelengthif the beamis steered[12]. It should be noted, howe\er,
that for pulsedwavesthis condition is relaxeddueto the time separationamongthe
pulsesfrom individual elemerts. Becausethe minimum elemen pitch is dependen
on the wavelength, i.e., inversely dependent on the frequency the construction of
an array is more challenging as the frequencyincreases. The issueof crosstalking
betweenadjacern elemens alsohaveto be considered.Additionally, the needto have
separateelectrical connectionsto re ead elemen individually causesthe required
hardware to be more complex.

Another limitation for phasedarrays is the acquisition time. Multiple transmis-
sionsare neededin order to achieve focus at di®erert depths within the ROI. The
time betweenthe initiation of consecutie transmissionsis known as pulserepetition
frequency(PRF). The PRF cannotbe arbitrarily large becauseedhoescorrespnding
to consecutie transmissionsshould not overlap. Becausethe time of arrival of the
pulsesdepends on the speed of sound, the PRF is a fundamenal limit of phased
arrays. Se\eral techniques have been proposedto overcomethis limitation, among
them the useof amplitude-steeredarrays [15 and coded-excitation arrays [16].

The cortrast resolution is particularly compromisedwhen dealing with spedle
basedimages[17],[1§. The resolution cell of an imaging systemis de ned as the
area (or volume) that correspndsto the smallestresohable detail. Becauseultra-
sonicimaging is coheren, whenthere are many scatterersrandomly distributed in a
resolution cell, their re°ections may interfere constructively or destructively, depend-
ing on their relative position to the transducer, generating spots of brightnessand
darknessin the image. For focusedsystems,these spots tend to have a sizeon the
order of the focal region [10], and the resulting image will have a granular appear-
ance. Spedle is very commonin ultrasound medical imaging becausebody tissue
is a semitranspareh media. If the point spreadfunction has a wide mainlobe or
high level sidelokes, the spots generatedby the spedle can maskregionsof negative
cortrast. This is particularly harmful in applications such as early cancerdetection.

B-mode, SAFT, and array imaging have beenstudied for a long time and their
limitations arewell documerted. There exist another approad to the problem which
consistsin using inverse formulations and regularization theory, for which seweral
techniques have been proposedin acoustic and similar imaging modalities sud as



radar. It is of special importance to compare their performancewith that which
can be obtained using corvertional acousticimaging methods. Spedkle-basedimages
are proposedas targets of reconstruction becauseof the limitations of convertional
technigueswhile dealing with thesetype of images.

1.2 Inverse Problems Approac h to Ultrasonic Imaging

Inverse formulations depend on a function (forward model) that represen the
measureddata at the output of a systemas a function of a set of variables. An
inverse problem formulation consistsof nding the values of the variables of the
system, given the acquired data and the forward model. An example of sud an
approad was exploredin [19] using a minimum meansquareerror (MMSE) inverse
‘Tter to avoid di®ractional e®ectdn ultrasound SAFT imaging. Due to instability of
the forward model in the presenceof noiseor errorsin modeling, the mereinversion
of the system can lead to inaccurate results. To deal with this limitation, prior
information about the data to be recoveredare incorporated alsoin the model used
for inversion. This processin known as regularization.

A well known regularization approad is the truncated singular value decompsi-
tion (TSVD), which Tters the unstable eigervaluesof the forward model to achieve
stability during the inversion. The number of eigervaluesto be Ttered dependson
the stability of the forward model and the amourt of noisein the data. TSVD was
explored for B-mode imaging in studieslike [20] and [21]. Its main computational
limitation is the needto calculate the singular value decompsition (SVD) of the
forward model.

Another commonlyusedtechniqueis Tikhonov regularization, which resultsfrom
adding to the error function of the least squaresolution an extra term that is the
quadratic norm of a linear transformation of the data to be recosered. The prior
knowledgeis introducedthrough an appropriate choice of the linear transformation.

Total least squaresis a natural extensionto the least squaressolution to a linear
problem, by taking into accoun sourcesof error not only on the data but alsoin the
forward model. Lately, this technique hasbeenexploredin [22] applied to ultrasonic
inversescattering.

A very simple yet powerful extensionto Tikhonov regularization correspndsto
using a linear cost function with a nonquadratic norm. This conceptwas rst used



in a technique called total variation regularization, which consistsof using Tikhonov
regularization with a discretegradiert operator and a norm equalto 1. Sud a regu-
larization technique wasfound to presene edgesn imagesbetter than the equivalent
quadratic Tikhonov regularizer. It was usedin [23] to solve for breast ulstrasonic
imaging and in [24] for undergroundarray imaging using electromagneticpulses.

Studies with total variation regularization shoved that using a norm lessthan
2 for the regularization cost function results in a higher enforcemen of the a priori
information. This conceptcan be usedwith any linear operator and any value of the
norm of the cost function, resulting in generalizedTikhonov regularization with 1§
norm costfunctions. Examplesof the useof this type of regularization for pulse-eto
imaging problemsare [25] appliedto spotlight SAFT radar imaging and [26] for point
sourcelocalization using sensorarrays. A more generalframework for the selection
of valid regularization cost functions for generalizedTikhonov was exploredin [27].
This relatesto the work of Delaney and Bresler [2§ for limited angle tomography
and Jarrot et al. [29] for ultrasonic elasticity imaging.

The improved performanceof nonquadratic Tikhonov occursbecauseat causeshe
solution to the augmerned least meansquareproblem to be of the form A(X)x = v,
where the matrix operator dependson the data, and henceincorporates additional
a priori knowledge on the inversion equations. This is also accomplishedby the
least squareswith point-count regularization (LPCR) [3(], [31] which usesan image
reconstructedwith a modi ed Wiener Tter to have an appraximation of regionsof
high energyin order to construct a cost function that penalizessolutions with high
energy content. Mumphord and Shawv regularization was conceptually introduced
in [32 and dealswith the joint problem of estimating the unknown data and the
edge eld of the imagesothat the energyof the edgecan be usedas a regularization
constrairt, just likethe energyofthe wholeimageis usedin LPCR. This approad is of
special interest for segmeration problems. A nonquadratic version of the algorithm
was implemerted and usedto reconstructradar and ultrasonic imagesin [33].

Entropic regularizers(theoretical developmeri can be found in [34] and appli-
cations to radar imaging in [35]) are designedto enforcesolutions with low energy
content and were found to be superior to Tikhonov regularization for the caseof
sparseimages.



1.3 Contribution of this Work

A wide variety of regularization techniques have been suggestedfor pulse-ebo
imaging in acousticsand other coheren imaging modalities. Most have beentested
with two typesof images:a small collection of isolated scatterersor compactregions
with a cortinuous, locally uniform re°ectivity distribution. Howewer, the usefulness
of regularization techniquesfor spedle basedimageshasnot beenproperly explored.
Givena xed regularization inversionmethod, there are many factorsthat can a®ect
the quality of the reconstruction, which includesimaging parameters(such as the
bandwidth of the transducer), regularization parameters(which are dependen onthe
speci ¢ type of regularization used), and sourcesof noise(such aserrorsin modeling
or additive noiseon the acquireddata). All of thesefactors have to be consideredin
order to evaluate the performanceof the reconstruction algorithm. Becauseof their
conceptualsimplicity and reported performance,quadratic and generalizedTikhonov
have beenchosenasregularization techniques. The goalsof this study areto explore
the feasibility and e®ectivenessof regularization by:

1. Evaluating the quality of the reconstruction of spedkle-basedimagesasa func-
tion of imaging parameters(i.e., bandwidth of the transducer, f/n umber, and
distancebetweenROI and focal region), and

2. Comparingthe reconstructedimageswith thoseobtained by corvertional imag-
ing techniques,e.g.,B-mode and SAFT.

1.4 Organization of this Thesis

This thesis is organizedas follows: Chapter 2 presens an overview of corven-
tional monostatic pulse-ebo imaging techniques. Chapter 3 preserts formulation
of pulse-ebo imaging using inverseformulations and an overview of regularization
theory as a tool to solwe this problem. Chapter 4 presents simulations to shaw the
performanceof the inversion algorithm and the e®ectof seweral parametersin the
quality of the reconstruction. Finally, Chapter 5 discusseghe results of this work
and o®erssuggestiondor future work.



CHAPTER 2
CONVENTIONAL ULTRASONIC IMA GING

In the following discussion,only monostatic imaging (i.e., using only one trans-
ducerfor transmission/reception)will bediscussed. Array imagingwill not be covered
in the presen study.

2.1 B-Mo de Imaging

The con guration for monostatic acousticalimaging is depictedin Figure 2.1(a).
The transduceris placedon a certain position over the external surfaceof the ROI,
whereit sendsan acousticpulseand receivesthe correspnding echoes. The ervelope
of the signalformed by the edhoescan be displayed asa function of time (or distance
if the speedof soundis known) in what is known asan A-scan[36] (A standsfor am-
plitude); an exampleis shavn in Figure 2.1(b). The envelope is typically compressed
in a logarithmic scalebecauseof the large dynamic range of the signal. The scan-
ning processcan be repeatedfor di®eren scanningpositionsover a certain tra jectory
(typically a straight line), sud that information is gatheredfor a crosssection of
the ROI; a 2-D imagecan be formed, with ead column correspnding to a scanning
position. The brightnessof the pixel for ead column is proportional to the ampli-
tude of the envelope of the received edoes. Sud an image is known as a B-scan
or B-mode image (B stands for brightness); an exampleis shovn in Figure 2.1(c).
An edo sequencas acquiredfor every scanningposition, and every edho sequences
mapped to a column in the B-mode image.

2.1.1 Two-point spatial resolution of a B-mo de imaging system

The two-point spatial resolution of an imaging systemis determinedby its ability
to discriminate two point-lik e targets closetogether. When the image is restricted
to a plane, we are concernedabout the resolution in both axes, resulting in two
de nitions of resolution [10]:



/ Transducer

1
2

-

.
-
. "
- *pag t
h..-_i ik, “.-_.-_.-_
«* e _a%e .
* g .-_il TR LM
LR T
PR L
P
e Tal *ou
e d ¥ gl g W

— RF signal
—— Emalopa

20 N5

135

#oual distance in mm

18: 185 19

irs

=

o
xE

a
=

WL U BIUBTSER (Bl

o1
e

o

o]
Lateral distancs in mm

_*1-_5

(e}

(&)

guration

Figure 2.1: B-mode imaging con



1. The axial resolution is the spatial resolutionin the direction of propagation of
the wave and is restricted by the time duration of the signal emitted by the
transducer (or equivalertly, on its bandwidth). The two-point axial resolution
of a systemcan roughly be approximated, assuminguniform frequencycornent
in the bandwidth, as

¢x= 2B, (2.2)
where:

c = speedof sound

B, = bandwidth of the signal

2. The lateral resolutionis the spatial resolution on the axis perpendicular to the
direction of propagation of the wave. While the axial resolution dependsexclu-
sively on the bandwidth of the emitted signal, the lateral resolution dependson
the characteristics of the ultrasonic system. For a given geometry of a source,
the beanwidth is a function of the position. The two-point lateral resolution
is de ned as

¢y= 2rtan’ (2.2)

where
r = depth of the target on the X axis

' = half-beanwidth angle

2.1.2 Characteristics of common geometries for ultrasonic transducers
Two commontypesof transducerswill be brie°y discussed:nonfocusedcircular
pistons and focusedtransducers.
Nonfocusel transduers. The most represemativ e geometryis the circular piston,
which consistsof a planar, circular surfacewith a uniform surfacevelocity [12]. For
this geometry the half-beanwidth angle betweennulls is given by

. . 3:83
= arcsmk—a (2.3)

where
k = wave number of the acousticwave

10



a = radius of the transducer

For Eq. (2.3) to be valid, the target must be in the far eld of the transducer,
i.e., the distancefrom the transducerto the target shouldbe larger than the Rayleigh
distance,which can be appraximated by

va?
I:eRaerigh = 4_ (2.4)

5

where
, = wavelength of the acousticwave
a = radius of the transducer

It canbeseenfrom Eq. (2.3) that the beanwidth for a planar piston hasaninverse
dependencyon the radius of the transducer,which meansthat a larger transduceris
more directive (has a narrower beanwidth) than a smaller one.

Focusal transduer. The ultrasonic beam can be focusedon a certain region
(named focal region) to obtain high acousticintensity and good lateral resolution.
This can be accomplishedby using a concave, spherically shaped transducer [10]
which will produce a beam pattern that is focusedcloseto its radius of curvature
(ROC). This geometryis depictedin Figure 2.2.

Figure 2.2: Geometry of a focusedtransducer

A parametercommonlyusedto describe a sphericaltransduceris the focal number
or f4, which is de ned asthe ratio of the ROC and the diameter of the transducer:

11
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The lower the 4, the more focusedthe transduceris. The degreeof focusing will
have a direct impact on all the parametersof the di®raction pattern of the transducer.

The half-beamwidth spreadingangle for depths beyond the focal region can be
appraximated as

fy (2.5)

1
= arctan — 2.6
arc anzf# (2.6)

Another parameterde ned for a focusedtransduceris the depth of focus, which
is the -6 dB beanwidth in the direction of propagation, and is given by

F, = 7:08f 2 (2.7)

Also, for a focusedtransducer, the -6 dB beanwidth on the cross-rangeaxis at
the ROC givesthe lateral resolution at the focus:

Fp = 1028:1: # (28)

A transducerwith a smallervaluefor f4 will have better lateral resolution at the
focusaccordingto Eq. (2.8), a shorter depth of focus accordingto Eq. (2.7), and a
larger spreadingangle accordingto Eqg. (2.6). Hence,there is a trade-o®involving
the sizeof the ROI and the best lateral resolution.

In spedkle-basedimages, se\eral scatterersare presert within a resolution cell.
Becauseof this, the imageshave a granular appearancewith bright and dark spots.
The size of the spedle spot is known as correlation cell size[18]. The correlation
cell sizeis in the sameorder of the size of the focal region [10], [18§. Approximate
expressiongtaken from [18 with the bandwidth B, given by the standard deviation
of the pulse envelope shape) for the lateral and axial correlation cell sizesS)aera and
S.ia are

Siateral = 0:87.f 4 (2.9)
0:91

Saxial = B— (2.10)
0

12



2.2 Stripmap Synthetic Ap erture

When a sourcewith a larger physical aperture (diameter) is used, the beam s
more directional and a better lateral resolution is achieved. That is the principle
behind synthetic aperture, which encompasses group of techniquesto simulate a
larger aperture using elemens with a small physical aperture. The axial and lateral
resolution will depend on the con guration usedto synthesizethe aperture.

The simplest SAFT con guration is called stripmap [37]. A simple diagram for
a stripmap synthetic aperture systemis depictedin Figure 2.3:

Figure 2.3: Con guration for stripmap imaging

On this con guration, the edoes are collected at evenly spacedpositions with
a distance of ¢ u acrossa distance L. The edoes from the re°ector collected at
the position u = i¢Cu, i = 0;1;2::: dueto an ideal point target, assumingthat the
transducer transmits an spherical wave over a certain beanwidth given by p, will

occur at the time given by

q
2 X%"' (Yn i U)2

¢t, = S (2.11)

where
¢ = speedof sound
Xn = depth of nth target
Yo = azimuthal position of the nth target

13



The time delays are calculatedassumingconstart speedof sound. The factor of 2
comesfrom the fact that the time correspndsto around trip betweenthe transducer
and the target.

2.2.1 SAFT signal pro cessing for stripmap con guration

The reconstructionprocesscan be performedusing operationsin the time domain
with an algorithm known as badkprojection [37], [3§. To nd an approximate value
of the re®ectivity at a position (x;y), the badkprojection algorithm adds coherettly
the data at the times given by Eq. (2.11) for every scanningposition u.

Equation (2.11) mapsthe position (x;y) to a value of time correspnding to the
start of an edho, but becausethe peak of the edo occursat a later momern in time,
the signalshave to be decorvolved in order to apply the badkprojection algorithm.
If the decorvolution is not performed,the quality of the imagewill be degraded.For
this purpose,the signal is correlated with a referencesignal, which correspnds to
a typical waveform emitted by the transducer (for a focusedtransducer, the signal
can be the wave at the focus). The correlation is a measureof the similarity of two
signals. If the received signal cortains edhoes(delayed versionsof the emitted pulse),
then the maximum of the correlation will occur at the positionsin which sud echoes
start. The correlation can be expressedn terms of a corvolution so this processis
commonlyreferredasmatched Itering, and the referencesignalsg(t) asthe matched
Tter:

sm (t; u) = s(t; u) asg(j t) (2.12)

where
sw (t; u) = matched Tter signal
s(t; u) = signalreceived at the scanningposition u

In the radar commnunity, the transmitted signalis a chirp (frequencymodulated)
pulse, which has a very large bandwidth and is highly asymmetric. Hence, the
matched Ttering processenhancesthe axial resolution. Howewer,ultrasonic pulses
are very limited in terms of bandwidth, sothe matched Ttering processdegradeshe
axial resolution.

Data smearing acrossse\eral points in the image occurs becauseof the nite
physical aperture size. Beamforming improves the quality of the image becauseit
exploits the redundancy of the measuremets. Beamformingin the time domain is

14



accomplishedusing the badkprojection algorithm, which consistson performing a
weighted integral of the valuesof the received signal that correspnd to time values
that lie in the geometricplaceof the dispersionof atarget point locatedat coordinates
(x;y), which accordingto Eq.(2.11) is a hyperbola. The badkproyectedsignal can be
expresseds

7 0 q — 1
y+BWx 2 X2+ (yi u)
s(x;y) = ®,5y @ ! :uA du (2.13)
yi BWy c

where
BW, = beanwidth of the signal at the depth x
®, = apodization factor
sy = matched ltered signal

When Eq. (2.13) is used,the badkprojection operation will give higher valuesif
it is applied at positions in which a target exists; howewer, the valuesthat will be
generatedfor positionsin which no targets are presert are not goingto be equalto
zero. This is the medanism of sideloke formation in SAFT. The apodization factor
®, is usedto reducethe level of the sidelokes,at the expenseof degradingthe lateral
resolution [13. Only scanningpositions that are inside the subaperture (i.e., the
region of spacethat lies within the beanwidth of the transducerat a certain depth)
are included in the integral.

The integral in practice will be replacedby a sum, and the valuesof x and y will
be discretizedto the valuesof the grid for which the image will be reconstructed.
Becausewe are dealing with discrete-time signals,the value of the matched Ttered
signal is only known for discrete valuesof time; thus, interpolation should be used.
Howewer, if the sampling frequencyis high enough, good performanceis achieved
without the needof interpolation.

It is alsoworth mertioning that SAFT reconstruction can be performedin the
frequency domain using algorithms sud as frequencyinterpolation [39] and range
staking [38]. Thesetechniquesare reported to have lower computational cost than
their time domain courterparts.
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2.2.2 Spatial resolution of stripmap synthetic aperture techniques

The improvemern of the lateral resolution when using stripmap SAFT is mainly
limited by the beanwidth of the transducer. Although in B-mode imaging a small
beanwidth is desirable,in synthetic aperture imaging a larger beanwidth will cause
morelinesto beincludedin the subaperture for every depth and hencethe uncertainty
region can be further reduced. There is a relationship betweenthe geometry of the
transducer and the beanwidth, so the lateral resolution will also be dependert on
the type of transducerused. For a circular piston of radius a, the limit on the lateral
resolutionis given by

cy= 2 (2.14)
2

In the caseof a focusedtransducer,it hasbeenshawn in [40] that the geometric
focus can be treated like a virtual source of ultrasound; therefore, the synthetic
aperture processingcan be accomplishedby delaying the signalswith respect to the
position of the focus (and not the surfaceof the transducer,asin the caseof a planar
piston). The expressionfor the lateral resolution was shovn to be

¢y= 082, (2.15)

It canbe noted that in both casesthe lateral resolutionis only dependert on the
geometry of the transducer and no longer dependson the depth of the ROI. Also,
for a focusedtransducer,the theoretical lateral resolution for SAFT is even lessthan
the best achievable for B-mode, which is given by Eq. (2.8). Howeer, due to the
presenceof sidelokesgeneratedduring the signal processingthe contrast resolution
of the imagesgeneratedusing SAFT is worsethan that adievable with a B-mode
imagewhenthe ROI is at the physical focus of the transducer.

The conceptsdeweloped in this chapter will be illustrated though a simulation
correspndingto a ROI containing a singlepoint scatterer. The simulated transducer
is sphericalwith f4 of 1, 50%bandwidth and a certer frequencyof 6 MHz. The speed
of soundwassetequalto 1500m/s, which yieldsa wavelength, equalto 250t m. The
results for the simulations are shown in Figure 2.4. Figure 2.4(a) shavs the B-mode
image generatedwhen the scattereris at the focus of the transducer, with a lateral
resolution of 275* m which is very closeto the expected value given by Eq. (2.8).
Figure 2.4(b) correspndsto the casewhenthe scattereris 3 mm beyond the focus of
the transducer. The beam spreadingis clearly noticeableand the lateral resolution,
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which hasa value of 1575 m, is se\erely degraded.Figure 2.4(c) shows the result of
applying SAFT processingto the out of focus B-mode image. Hamming apodization
was usedfor the reconstruction. The lateral resolution is equal to the one achieved
when the scatterer was at the focus of the transducer (2751 m). Howeer, it can
be seenthat sidelobeswere formed during the reconstruction. Figure 2.4(d) shows
the beampro les (in decibels) at the depths of maximum mainlobe (blue curve) and
sidelole (red curve) intensities. The maximum intensity of the sidelobesis 26 dB
below the maximum intensity of the mainlobe.
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Figure 2.4: Reconstructedimagesusing convertional techniquesfor a single point
scatterer
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This concludesthe brief overview of monostatic convertional imaging techniques.
The proceduresfor image generationusing B-mode and SAFT have beenoutlined.
The spatial resolution for targets on focus and out of focus have been analyzed
through governing equationsand a simple example. Also, it has beenshovn that
SAFT improvesthe lateral resolution at the cost of sideloke generation. In the next

chapter, the formulation of monostatic pulse-ebo imaging using regularization will
be descrited.
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CHAPTER 3

REGULARIZA TION THEOR Y FOR IMA GE
RECONSTR UCTION

3.1 Pulse-Ec ho Imaging Problem Using an Inverse Problems

Form ulation

Considerthe con guration shavn in Figure 3.1.
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Figure 3.1: Con guration for pulse-eto imaging inversion

The ROI is a squareregionwith X, - X - Xpandy, - Yy - Yyp The transducer
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is moved acrossthe Y axis, and the pulse-ebo data is acquired at locations u,
1. |- g The receiwedsignalis sampledat discretetimesty, 1- k- p; the time
signal recordedat the position u; will be denotedby g(t; u;).

The ROI is also discretized, with the discrete valuesof x and y denotedby X;,
1- i- nandy,1- j - m. The re°ectanceof the ROl will be assumedto be
constart for ead pixel and will be denotedby r (4., )-

The spatially variant impulse response of the transducer (i.e., the signal that
would be received if a point target of unitary amplitude is at the coordinates (R; §)
relative to the transducer) will be denotedby s;.¢(t). Sud function dependson the
geometry and time impulse responseof the transducer, and is in generala compli-
cated function for which no suitable closedform exists. Howewer, for simulations it
can be computed using numerical methods like the FIELD 11 [41] program; or for
experimerts it can be measuredusing a hydrophoneor the wire technique [42]. The
spatial impulse responsehasto be calculatedfor the acquisition time interval of the
pulse-ebo data and sampledat the samesamplefrequencyusedin the acquisition
process.

If the transduceris placedat the location u,, the received pulse-ebo data will be
the sum of the cortribution of the time impulse responseof all the pixels of the ROI
scaledby the valuesof the re°ectancesof eat pixel, sothat g(t; u;) canbe expressed
as

X
gt uy) = r(Xi;Yj)SXi;yji u (1) (3.1)
i=1 j=1
For the last equation, the fact that the relative coordinatesof the point (x;;y;) when
the transduceris at the point (0;u;) are equalto (x;;y; i u) hasbeenused. Since
the signalsg(t; u;) and sz.y(t) are known for discretevaluesof time, the last equation
can be expresseds:

XX
a(tk; up) = (X5 Yj)Sxiy; i u (te) (3.2)
i=1 j=1
Both sequenceg(tx;u) and ry,,, are two-dimensional,sothat in order to express
Eqg. (3.2) asa linear system,the vectors corresmpnding to g(tx; uj) and ry;,, have to
be stadked to form a one-dimensionalsequence.With this modi cation, Eq. (3.2)
can be rewritten in matrix form as
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In this formulation, the matrix Apg represems the numerical synthesis of the
Green'sfunction of the system. If the systemof equationsshovn in Eqg. (3.3) can
be solved, then the re°ectancesof the ROI can be recovered basedon the measured
data. The rest of this chapter will shaw this can be achieved by using regularization
methods and discussthe implemertation of the techniquesthat have beenusedon
the simulations performedfor this study.

3.2 Least Squares and Generalized Solution
Considerthe following set of equations:
AXx =y (3.4)
The three possiblescenariosare as follows:

1. The systemis full rank; i.e., the number of equations equalsthe number of
unknowns. In this casethere is only one solution which is given by

2= Aily (3.5)

2. The equation matrix A hasmore columnsthan rows; i.e., there are more equa-
tions than unknowns. An exact solution for the systemdoesnot exist, sothis
problem is solved in the mean squaresense. The solution is chosento be the
vector X that satis esthe least squaresequation

R = argminjjy i AXxjj3 (3.6)
X

3. The equation matrix A has more rows than columns;i.e., there are more un-
knowns than equations. There are in nite many solutions for this type of
system, which is also solved in a mean squaresense.The solution R is chosen
to be the minimum energysolution to the least squaresequation, which is also
the solution to caseq1) and (2) and is given by

R = argmin jjxjj3 subject to min jjy i Axjj3 (3.7)
X

An important tool for the solution of linear systemsis the pseudoinverse For a
matrix A, its pseudoirverseis denotedby A*. Using singular value decompsition,
we can express:
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A=USVT (3.8)

with U and V unitary matricesand S a diagonal matrix with the eigervaluesof A in
decreasingrder over the main diagonal. The matrix S* is constructedby transposing
S and replacing the non-zeroenries by their reciprocals. The pseudoirverseA+ is
then de ned as

A" = vstuT (3.9)

The pseudoirverseof a full rank matrix is equalto its inverse,that is, A*™ = Al 1.
It can be shown [43 that the solution to Eq. (3.7) can be expressedn terms of the
pseudoirverseof the forward operator as

2=A"y (3.10)

3.3 Regularization

The problemwith the pseudoirversesolution arisesfrom the fact that the system
de ned by Eq.(3.4) can be unstable. The stability of a linear systemis depender on
the linear independenceamongits equations. The condition number of a matrix is
the ratio betweenits largestand the smallestsingular value, and givesa measuremen
of the stability of the system. To seewhy, we can rewrite Eq. (3.10) rst without
noisein the data:

X uly

A (3.11)

i=1
The terms u'y are known as the genealized Fourier coexcients; a systemis said
to satisfy the discrete Picard condition if the terms u'y on the averagedecy faster
than the correspnding eigervalues¥; [44).
Now for the casewherethe ideal data y is contaminated with noiselabeledasw,
we can write

R=A"(y+w)=A'y+ A'w (3.12)
and using the SVD decompsition

Xy, X T

R =
Ya %

(3.13)

i=1 i=1
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Even though the eigervaluesof the matrix A decreasethe terms u'y decreaseac-
cordingly sothat the cortributions of y are bounded;however, the terms u’ w do not
satisfy the discrete Picard condition sothat the noiseis ampli ed and the solution
is distorted. Sincethe ampli cation of the noise dependson the reciprocal of the
eigervalues,a large condition number meansthat the matrix is more unstable.

To courteract the noiseampli cation, the formulation of the inverseproblem has
to bemodi ed sothat it becomesstableevenin the presencef noiseby incorporating
a priori information about the relevant featuresof the desiredimage. This approat
is known as regularization.

A regularization method is de ned as an inversion method dependert on a pa-
rameter ® (called the regularization parameter) which yields a family of approximate
solutions. In a noiselesscase,the best solution will be obtained if ® = 0, i.e., if no
regularization is applied. In the presenceof noise,howeer, the value of ® should be
selectedso that the modi ed systemis stable at the cost of loosing features of the
data to be recorered. Hence,one must selecta value of ® that not only ensuresthat
the systemwill be stable for the expected valuesof signal-to-noiseratio (SNR) but
alsopresenesmost of the featuresof the data to be reconstructed,sothat the choice
of an appropriate value of ® becomesextremely important.

3.4 TSVD Regularization

The most intuitiv e way to compensatefor a high condition number in a linear
problemis to limit the lower value of the eigervaluessothat that the ratio ¥%ax =%in
is constrainedto a certain value. This regularizationis calledtruncated singularvalue
decomposition (TSVD)[44] and can be expresseds

X we(¥uly

R= .
| % (3.14)
i=1
where 8
<1 if%- ®
We(%) = |
- 0 else

For this method, the regularization parameteris the lower bound for the eigerval-
ues. Even though this solution is very straightforward, the singular value decompo-
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sition of the matrix A, which is computationally demandingfor large scalesystems,
hasto be performedin order to apply this technique.

3.5 Tikhono v Regularization

One of the most common regularization methods is the Tikhonov regularization
[45], which consistsin modifying the least squaresequation by adding an additional
cost function equalto the squarel, norm of a linear transformation of x:

© a
R = argmin jjyi Axjj3+ ®jLxjj3 (3.15)
X

The advantage of Tikhonov regularizationis that sincethe modi ed costfunction
is quadratic, the gradiert of Eq. (3.15) is linear, and the solution in the meansquare
sensds given by the following linear system:

(ATA+ ®LTL)Rau = ATy (3.16)

The particular choice of the linear transformation matrix L will determine the
featuresthat this regularization method will enhance.Two commonchoicesare the
following:

1. The identity matrix I, for which the cost function is simply the energyof the
image. The inclusion of this term implies a penalization of solutionswith large
norm, soit favorslow energysolution. Using the SVD of the system,it canbe
shown that the solution can be expresseds

X we(¥)uy

R =
%%

(3.17)

i=1
where
%
3 =
W®( /f") % + ®2
The e®ectis a Itering of the smaller singular values, smoother than the case
of the TSVD regularization, with the advantage that the SVD of the system
doesnot needto be calculated. Notice that for large ® sothat AAT < @1, the
asymptotic solution for % is given by

Ren =

ATy
& (3.18)
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This last equation basically shavs that the solution for large ® will correspnd
to the adjoint operator AT applied to the data and scaledby a factor of &.
A direct consequencés that asymptotically with ®, the estimate ® will go to
zero.

2. The discreteappraximation to the gradiert,
2

3
1 i1 0 0 ¢c¢ O
0 1 j1 0 ¢c¢ O

L=g0 0 1 1 ¢¢ O (3.19)

O 0 0 ¢¢ 1 1
This term favors solutionsthat are locally smaoth, soit favors reconstructions
of imagesthat consistof seeral regionsbecauseit presenesthe edgesbetter

than in the caseof the identit y matrix and alsoenforcessmaothnessaway from
the edges.

3.6 Generalized Tikhono v Regularization

Tikhonov regularization consistsin adding a quadratic cost function to the least
squaresequation. Even though a quadratic cost function yields to a linear problem,
sudh penalization may not be optimum for a given problem. A generic approad
known as genealized Tikhonov regularization [46] is given by

© a
R = argmin jjyi Axjj3+ @ (x) (3.20)
X

The term f (x) is known as penalty or regularization cost function. The term
jiyi Axjj3 is referredto as the data discrepancyor t-to-data function. Sewral
choicesof nonquadratic cost function have beenstudied and the simplestoneis the
I¥ norm with k 8 2. The I{ norm of a vector x, denotedasjjxjjk, is dened as

X

ixik s xj (3.21)

Figure 3.2 shonvs a comparisonamongthree di®erert norms. It can be seenthat
asthe value of k decreasesthe penalizationis lessseere for larger valuesand more
seerefor smallervaluesof the argumert of the I¥ norm function. Becauseof this, the
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featuresin the imageare better presenedthan in the caseof quadratic regularization,
and small componerts of the imagewhich correspnd to noisecan be better Ttered
while the large valueswhich correspnd to the featuresof the desiredimage can be
better presened. A well-studied casecorrespndsto the |1 norm usedwith the matrix
L equalto the discretegradiernt approximation, and is known as the total variation
regularization [47]. This regularization method was deweloped for edge-preserving
regularization, and works better than the equivalert quadratic Tikhonov method.
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Figure 3.2: Comparisonof the |, norm with di®eren valuesof k

A nonquadratic ¥ norm regularization cost analogousto the quadratic Tikhonov
regularization can be expresseds
© a
R = argmin jjyi Axjjs+ ®jjLxjjK (3.22)
X
One dizcult y of this particular choice of cost function is that the I¥ norm for
valuesof k lessor equalthan 1 is not di®ereniable at zero. Becauseof this, the cost
function can be rewritten as

)
. . . D )(\I | . -2 —¢k=2
R=argmin jjyi Axji5+ @&  j(Lx)ij*+ (3.23)
X i=1
where  is a small, positive constart. The gradiert of the last equationwith respect

of x can be calculated, resulting in the following equation:
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i ¢
'ATA + @LTW-(x)L x = ATy (3.24)

where
3

. ¢ o ’
W-(x) = 5 diag () 2+ T

(3.25)
This nonlinear equation can be solved iteratively. Starting with an initial guess
x©@ and using the fact that at corvergencex(" = x(M,

i ¢
'ATA + @LTW-(xM)L x™D = ° ATy + (1 °)H (x")x™ (3.26)

where® - 1 is a parameter cortrolling the relative amplitude of the terms in the
modi ed Hessianupdate equation. The iterative processis stopped when the dif-
ferencein the norm between successig iterations is small enough, that is, until
x5 xMjj2gix("*D jj2 < + where+ is the desiredtolerance.

It should be noted alsothat this particular regularization method hasthree reg-
ularization parameters. The parameter ® is the one that cortrols the amourt of
regularization imposed. The inclusion of additional regularization parametersadds
more degreesof freedomto nd a more accurate solution, but at the sametime
complicatesthe parameter selectionprocess.

3.7 Automatic Regularization Parameter Selection
Techniques

The choice of appropriate valuesfor the regularization parameter is crucial to
obtain good results. Eventhough for simulations one can estimate a rangeof optimal
parametersby using visual inspection with a set of referenceimages,in practice the
desiredimagesare not available, soquartitativ e parameterselectionmethods needto
be used. Seweral parameterselectiontechniquesare available and have beenexplored
in the specializedliterature:

1. The discrepancyprinciple [45 was originally introducedby Morozov [48. The
least squaressolution to a linear problem involves the minimization of the
residual jjy i Axjj3. For simplicity, it will be assumedthat there exists a
unique solution denotedby % for which the residualis equalto zerofor noiseless
measuremets y, that is, jjy i A%jj5 = 0. Howeer, in the presenceof additive
noisedenotedby w, the residualwhen x = R is equalto jjwjj3. For the noisy
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case,the value of x that minimizesthe residualwill be in generaldi®eren than
R. The discripancy principle statesthat the regularization parameter® should
be chosento be the largest of the set that generatesa solution that yields a
residual equalto a certain constan, that is

®opt = Max ® subject to jjy i ARejjs = k+ (3.27)

wherex is the expectedvalue of the minimum residualand k is a constart suc
that k , 1. For stochastic settings, this is equivalernt to knowing the statistics
(mean and variance) of the random additive noise. The main drawbad of this
method is that the value of the desiredresidual is usually unknown or only
roughly estimatedin real problems.

. The L-curve method was rst introducedby Lawsonand Hanson[49 and pop-
ularized by Hansen[5(Q. It consistsin plotting the norm of the regulariza-
tion cost (jjLR(®)jj» for the caseof Tikhonov) versusthe norm of the residual
(jyi AR(®)jj2) in alog-logscale.As in the caseof the discrepancyprinciple,
when there is noise presen in the measuremets, the residual is expected to
be the energy of the noiseand not idertically zero. For small valuesof regu-
larization parameters,the residual will be too small and becausethe solution
will typically be driven by the noise,the regularization cost will be high. As
the regularization parameterincreasesthe residualwill increase,and the regu-
larization costwill decrease.The rate of this change,howewer, is not uniform.
Intuitiv ely, one should selecta point in which neither the regularization cost
nor the residual dominate the behavior of the curve. If both the costand the
residual vary smaothly with ® (which is the casefor quadratic Tikhonov regu-
larization), the curve that is formed typically hasan L shape (hencethe name
of this method), and the optimal value of ® is chosento be the onethat corre-
spondsto the corner of this curve (typically chosenas the point of maximum
curvature), asshawvn in Figure 3.3.

The main limitation of this selectiontechniqueis that the L shape of the curve
is not guararteed for every regularization method; an important exampleis
TSDV (see[46] for a complete analysis). The applicability of this method
has beenstudied for IX norm generalizedTikhonov regularization in [51]. For
Tikhonov regularization, even though the curve will have a L shape, it will be

29



25

Optimum point
15F

0.5f

Regularization cost norm (in logscale)
[

0.5
5

4 3 2 1 0 1 2 3
Residual norm (in logscale)

Figure 3.3: L-curve method

non cornvergert if the generalizedFourier coexcients of the forward operator
do not satisfy the discretePicard condition [52]. Also whenthe residualis very
small, the L-curve fails to corverge[53.

. The generalizedcross-alidation method (GCV) wasdeweloped by Golub et al.
[54]. 1t is basedon the minimization of the predictive error and has a similar
derivation to the oneof the unbiasedpredictive risk estimator (UPRE) method
[46]. Unlike UPRE, GCV doesnot require knowledge of the statistics of the
noise. Becausehe ideal data is not available, an estimate of the error is derived
from the measuremets as follows: for a xed regularization parameter®, one
point of the measureddata is removed from the measuremets, and its valueis
estimated using the modi ed forward model and the rest of the measuremets,
with a correspnding estimation error. This procedureis repeatedfor all points
in the measuremets data set. The predictive error is de ned as the average
of the estimation errors for a xed ®. The optimum value of ® is the onethat
minimizesthe predictive error becausdt can discriminate better the data from
the noisein the measuremets. The GCV estimator for the predictive error can
be calculated as
iiyi AR@®)i3

[trace(l | ATA#* (®)A)]?

G(®) = (3.28)
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where A* is the linear operator relating y and 2(®), i.e., (®) = A*y.

The optimum parameteris the one that yields the the minimum value of the
GCV curve. An exampleof the appearanceof a GCV curve is shown in Figure
3.4.This parameterselectiontechnique doesnot su®erfrom the limitations that
that the L-curve has. Howevwer, it hasits own drawbads: the GCV curve can
have a very °at minimum, which makesit ditcult to choosean appropriate
parametervalue. Also, GCV hasbeenshovn not to corvergeto the optimum
parameterwhen the noiseis correlatedto the signal [50]. That is not the case
for the L-curve, provided that the noisedoesnot satisfy the Picard condition.
Additionally, its calculation is computationally expensive comparedto other
parameter selectiontechniques.
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Figure 3.4: GCV method

This concludesthe discussionof the inverseproblemsformulation for monostatic
pulse-ebo imaging. An overview of inverseproblemstheory was given, including the
issueof noiseampli cation. Regularization was introduced as a method to stabilize
the inverseproblem and nd meaningful solutions. Among the di®eren techniques,
I¥ norm Tikhonov regularization and its implemertation were described. Also, tech-
niguesfor regularization parameter selectionhave beendiscussed.The next chapter
will showv through simulations the result of applying thesetechniquesto pulse-ebo
imaging.
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CHAPTER 4
SIMULA TIONS

Seeral simulations wererun in orderto test the performanceof the reconstruction
using regularization approades. The simulated data were generatedusing Field 11
and corresnd to using focusedtransducersin a medium with speedof soundequal
to 1500m/s. The simulated transducershave a certral frequencyof 6 MHz (which
correspndsto a wavelengthof 2501 m) and a focal distanceof 19 mm. The sampling
frequencywas set to 60 MHz. Other parameterssud as the bandwidth, the focal
number and the distance betweenthe ROI and the focus were not held constart for
all simulations.

The spectrum of the transmit-receive impulse responseof the transducer, P (f),

was modeled as q

" 206 i 1)

P(f)=fexp | =i (4.1)

where
f = frequency
fo = certral frequencyof the transducer
BW = -3 dB transmit-receive bandwidth of the transducer

The variable - in Eq. (4.1) is usedto properly adjust the -3dB frequencyband
of the transducer. For the presen work, - rangedbetween0.9 and 1.
The transducerwas apodized to smaooth the variations of the acoustic eld. The

apodization function A(r) was chosento be a Hann function de ned as

3
1

Y
A(r)=2+ (1i 2)cos 3“ 4.2)
where
r = distanceto the certer of the tranducer

D = diameter of the transducer

The variable 2 in Eq. (4.2) is usedto cortrol the level of apodization for the
surfaceof the transducer. For the presert work, 2 was setto be 0.1.
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The ROIs usedfor the simulations consiston two-dimensional,squareregionsof
3 by 3 mm. The ROIs were divided into two concerric subregionswith the inner
one having a diameter of 1 mm.

e

Region 2

3 mm Region 1

Figure 4.1: Shematic diagram of the region of interest for the simulations

The subregionswill befrom now onreferredasRegionl and Region2, asshowvn on
Figure 4.1. The ROIs werediscretizedusinga grid of a quarter of a wavelength( ) at
the certral frequency resulting in imagesof 49 by 49 pixels. A total of 750scatterers
were distributed on the ROIs, resulting in a scatterer density of approximately 2.5
scatterersewery eight pixels. Becausethe highest bandwidth and the smallestfocal
number used are 100%and 1, respectively, the smallestresolution cell usedin the
simulations correspnds roughly to 0:5, 2. This meansthat a minimum scatterer
density of 2.5 scatterersper resolution cell is guararteed for every simulation. This
is above the limit of 2 scatterersper resolution cell determinedin [55] by Tuthill et
al. for sparsescatterer density in spekle basedROIs. The minimum value of 2.5
scatterersper resolution cell was also chosento avoid using a large grid size which
would increasethe computation time of the algorithm.

Two ROIs were used for the simulations: the rst with Region 1 cortaining
scatterersof peak re°ectivity amplitude 10 times higher than the onesin Region2,
and the secondwith Region1 containing scatterersof peakre°ectivity amplitude 10
times lower than the onesin Region2. For both ROIs, the samespatial distribution of
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the scattererswas used. The re°ectivity amplitudes of the scatterersvary uniformly
in an interval of 20% around the maximum amplitude value for ead region. Both
ROIls are shavn in Figure 4.2.

Axial distance in mm
Axial distance in mm

0 0
Lateral distance in mm Lateral distance in mm
(a) First scatterer distribution (b) Secondscatterer distribution

Figure 4.2: ROIs usedfor the simulations

Zero-meanGaussiannoisewas usedto cortaminate the data. The signal-to-noise
ratio (SNR) for the presen study is de ned as
VR |
a2

SNR = 10log 24
I w2

(4.3)

where
g = pulse-ebo data signal (without noise)
w = additive noise

The samerealization of noisewas scaledin order to changethe SNR sothat a
fair comparisonof the e®ectof se\eral parameterscan be performed.

The normalized meansquareerror (MSE) was usedin order to numerically eval-
uate the performanceof the reconstruction. The normalized MSE is de ned hereas
the squareof the 13 norm of the reconstruction error normalized with respect to the
squarel3 norm of the desireddata:

M SE = ”X'ié”% (4.4)
X2
where
x = ideal re°ectivity distribution
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R = reconstructeddata

As a complemem, the reconstructed imagesusing corverntional imaging tech-
niques(B-mode and SAFT imaging) togetherwith the regularization reconstructions
are also shown for selectedvaluesof SNR of 40, 30, and 20 dB. All the imagesare
shown in a logarithmic scalewith a dynamic range of 40 dB.

Se\eral regularization techniqueswere introducedin Chapter 3. For the presen
work, generalizedTikhonov was selectedasthe regularization method. This method
has seweral properties that makesit a reasonablechoice:

1. It is a genericframework that allows to regularizean inverseproblemin a very
°exible way.

2. It is computationally easyto implemert.

3. It allows the use of well studied automatic regularization parameter selection
techniqguessud as GCV and the L-curve.

During the rest of this chapter, the e®ectof di®erert parametersinvolved in
the reconstruction processwill be exploredin order to understandthe feasibility of
regularizationreconstructionappliedto pulse-eboimaging. Two typesof parameters
will be explored:

1. Regularization parameters (discussedin Section 4.1). This includes all the
parametersinvolved in solving the regularizedinverseproblem formulation of
Eq. (3.23) for a xed forward model matrix A.

2. Imaging system parameters. That is, the parametersthat a®ectthe forward
model used for the image reconstruction. Depending on the stability of the
forward model, the regularization procedurewill be moreor lesse®ectie. Three
imaging systemparameterswere exploredfor the presern work:

2 The relative pulse-ebo bandwidth of the transducer (discussedin Sec-
tion 4.2), de ned asin [42] to be the ratio of the -3 dB transmit-receive
bandwidth of the transducerand its certral frequency

2 Thef, ofthe transducer(discussedn Section4.3), asde nedin Eq. (2.5).

2 The distance betweenthe region of interest (ROI) and the focal depth of
the transducer (discussedn Section4.4).
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4.1 Choice of the Regularization Parameters

The appropriate choice of regularization parameters,as discussedn Chapter 3,
is crucial in the performanceof regularization reconstructions. As showvn in Eq.
(3.23), there are four parametersthat have to be chosenfor generalizedTikhonov
regularization. In the presen section,the criteria for the selectionof eat parameter
will be discussed.

4.1.1 Choice of regularization matrix L

The regularization matrix L can be chosenas any stabilizing linear operator
that includes a priori knowledge of the solution of the problem. In the caseof
spekle-basedimages,for which the re°ectivity distribution hasa random nature by
de nition, the optimum choiceof L is not clear. The most natural way of regularizing
an inverseproblem is to remove the more unstable eigervaluesas the level of noise
in the data increases.This is the ideabehind TSVD regularization (seeSection3.4).
Regardlesf the underlying structure of the desireddata, this approad keepsonly
the data that can be consideredas reliable, that is, the data that can be extracted
from stable eigervectors of the data space. Suc behavior can also be accomplished
by using Tikhonov regularization with L equalsto the identity matrix, asit was
shawvn in Eq. (3.17). This choiceof L also lters the unstableeigervaluesbut usinga
secondorder Tter insteadof a boxcar Tter asin the caseof TSVD. The equivalence
of the behavior is well documerted in the inverseproblemsliterature [45].

4.1.2 Choice of the o®set parameter

The parameter , as explainedin Section 3.6, is a small constart introduced
as an o®setto allow di®ereniation of the constrained least mean squares(LMS)
equationfor normsof the costfunction smallerthan or equalto 1. In orderto achieve
uniformity not only on  but alsoin the regularization parameter ®, the forward
model matrix and the simulated data were normalized by making their norm equal
to 1. With thesenormalizations, there is a rangeof ~ for which the reconstructions
were somewhatinsensitive to the speci ¢ value of this parameter. For larger values
of the regularization cost norm, the sensitivity to the value of  decreasesA value
of ~ = 10 7 was empirically selectedfrom a set of simulations. This value is small
enoughsothat the biasedintroducedin the reconstructionsis not signi cant.
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4.1.3 Choice of the regularization cost norm k

ClassicalTikhonov regularization usesa quadratic costnorm (k = 2). As it was
discussedn Chapter 3, this particular choice hasthe advantage of having a linear
solution but is not necessarilyan optimum choice in terms of performance. The
regularization cost norm k was chosenby inspection of the e®ectof the norm on
samplereconstructions. An exampleof the visual appearanceof the reconstructions
with valuesof k of 0.5, 1, and 2 is shavn in Figure 4.3. The simulation correspnds
to a reconstructionusing a transducerwith a bandwidth of 100%,f» of 1 and ROI at
the focus,with a SNR of 20dB. This particular value of SNR was chosenbecausehe
di®erencein behavior is clearerwhen the noisein the measuremetsis higher. The
impact of the value of k can be summarizedas follows:

2 From Figure 4.3(d), for k = 2 the solution looks oversmathed. Consisten
with Eqg. (3.17), with this choice of k the eigervectors correspnding to the
unstable eigervalues are ltered in order to cortrol the e®ectof the noise.
Becausethe unstable eigervalues are the onesthat carry the high frequency
information of the image, ltering them causesa distributed blurring which
resultsin oversmmthed imageswhen noiseis presen in the data.

2 From Figure 4.3(b), for k = 0.5 the solution looks sparse;i.e., there is no
smoothing e®ecion the reconstructedimageat the costof loosingmany features
from the original image. There is a small set of points that stand out from the
rest of the pixels in the image and the overall reconstruction seemsto have
lost its cortrast. This e®ectcan be explainedbetter starting from Eq. (3.22).
The regularization cost function when L is chosento be the identity matrix
simpli'es to jjxjj§, that is, the If norm of the data to be recovered. From a
“rst order analysisthis will be accomplishedwith smallervaluesof the norm of
X. Becausethe minimization equation is no longer linear, the eigervaluesare
not Ttered by only taking in considerationits particular numerical values(i.e.,
by using static Ttering). The Tltering processbecomesadaptive, extracting
information ewven from the unstable eigervalues. This is the reasonwhy the
solution is not oversmathed. As it was graphically shovn in 3.2 that smaller
values of k enforcea larger emphasisof the cost function. In this case,the
sparsity implied in the 1§ term will be larger whenk is smaller.
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Axial distance in mm
Axial distance in mm

0 ' .
Lateral distance in mm Lateral distance in mm

(a) Recectivity distribu- (b) k = 0.5(MSE = 76%)
tion

Axial distance in mm

Lateral distance in mm

(c) k= 1 (MSE = 55%) (d) k= 2 (MSE = 99%)

Figure 4.3: E®ectof di®eren choicesof regularization cost norm k

2 From Figure 4.3(c), for k = 1 a point of equilibrium betweenthe aforemetioned
behaviors is achieved. The solution is somewhatsparseas in the caseof k =
0.5and su®erdrom a slight blurring which howewver addsvisual cohesionto the
image. The normalizedMSE in the reconstructionwith k = 1 (55%) is smaller
than in the caseof k = 0.5(76%) and k = 2 (99%). This value of k is the one
that will be usedfor the rest of the simulations in the presen work.

4.1.4 Choice of the regularization parameter ®

The most critical parameterto be chosenis the regularization parameter®, which
givesthe relative weight betweenthe least mean square(LMS) term and the regu-
larization cost function in Eq. (3.22). The e®ectof having a xed value for ® is
shown in Figure 4.4, which shavs the MSE (calculated from the data in linear scale)
as a function of the SNR correspnding to the reconstruction of the re°ectivity dis-
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tribution of Figure 4.2(b) from pulse edo data from a simulated transducer of 100%
bandwidth, f; of 1 and ROI at the focus. For ead value of ®, the error starts on a
certain level whereit remainsmore or lessconstart until somethreshold value of the
SNR is readed. After that, the error appearsto increasealmost linearly with the
SNR. Smallervaluesof ® have lower valuesof MSE for low levelsof noise(high SNR)
but alsolower SNR thresholds. That is, the best choiceof ® is data-dependen. As a
complemen, the reconstructedimagesfor selectedvaluesof ® of 10 2 and 10 ! and
SNRsof 50 and 20 dB are also shawn.

By xing L, k, and , a family of solutions parametrized by ® is de ned. As
shown in Figure 4.4, the selectionof the solution that extracts the largestamourt of
informations from the data and that is not largely distorted by noisein orderto geta
meaningfulimageis of greatimportancewhendealingwith regularization. In Section
3.7 two techniquesfor the automatic selectionof the regularization parameter® were
introduced: the L-curve and GCV. The performanceof both criteria were explored
for the presem work and the results will be showvn for ead of the simulations that
follow in the rest of this chapter.

The values of ® were analyzed on the interval [10 4;10']. This interval was
determined through simulations. For ® < 10 * the regularization is too weak and
noisepropagatesto the reconstructionseven for an SNR of 100dB. For ® > 10, the
regularization constrairt term was large enoughfor the MSE in linear scaleto reach
asymptotic limit of 100%derived from Eq. (3.18). ® wasdiscretizedusing a uniform
exponertial grid with step sizeequalto 0.25,that is, ®= f10 4, 10 375, 10 3°
10775, 10'g.

In conclusion,for the presen work the following parameterswere chosenas fol-
lows:

1. The regularization matrix L will be the identity matrix.
2. The o®setparameter will be 10 7.
3. The regularization cost norm k will be 1.

4. The regularization parameter® will be chosenusing the L-curve and GCV on
the interval [10 #; 104].
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MSE vs SNR for fixed a: b=10" and k=1
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Figure 4.4: E®ectof di®eren choicesof regularization parameter®
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For a xed setof parameters,the tolerancefor the iterativ e processof Eq. (3.25)
was set equal to 0.001%. The factor °© was set equal to 1 becausefor ° - 1 the
algorithm had a slower corvergencerate with no obsenable reduction of the MSE.

4.2 E®ect of the Bandwidth of the Transducer

The e®ectof the bandwidth of the transduceris analyzedby reconstructing im-
agesfrom data correspnding to scanningthe ROIs with three simulated focused
transducerswith relative transmit-receive bandwidths of 100%, 50%, and 33%, re-
spectively. The pulsesin both time and frequencydomain are shovn in Figure 4.5.
Thesesimulations were performedwith an f, of 1 and thr ROI at the focus. Figure
4.6 shows the plots of the MSE asa function of the SNR for the regularization recon-
structions. Figures4.7 and 4.8 show the regularization reconstructedimagesselected
usingthe L-curve for eat simulated transducerfor selectedvaluesof SNR of 40, 30,
and 20 dB.

Se\eral obsenations canbe madefrom the results of this simulations. First, from
Figure 4.6 it is clear that the error in the reconstruction increasesmonotonically
with the level of noisein the measuremets, as expected. This can also be visually
veri ed by analyzing the quality of the imagesin Figures 4.7 and 4.8; the images
correspnding to higher levels of SNR represem better the underlying re°ectivity
distribution.

Second,it can be seenthat the quality of the reconstruction degradesas the
bandwidth decreasesFor example,for the secondre®ectivity distribution, for a SNR
of 30dB the normalizedMSE is in the range of 20-30%for a bandwidth of 100%but
the MSE increasesto 90% when the bandwidth is 33%. This behavior is expected
becausethe forward model matrix is a spatially variant corvolution kernel, which is
more stableif its spatial frequencycortent is larger. Reducingthe bandwidth of the
transducerwill increasethe axial duration of the impulse responseand hencereduce
the spatial frequencycortent in the axial direction. This will reducethe stability of
the forward model and hencewill increasethe error of the inversion algorithm. It
can also be noticed that the e®ectof reducing the bandwidth from 100%to 50%is
very sewere. This showvs that the algorithm is very sensitive to the frequencyconent
of the the ultrasonic pulse.
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42

120



Test 1: MSE vs SNR for k=1
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Figure 4.6: Test1 - MSE curvesfor regularization reconstructions
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Third, the performanceof the L-curve and GCV can also be analyzedfrom the
error curvesin Figure 4.6. For the reconstructionspresered in this work, both tech-
niquesseemto give comparableresults. A statistical analysisshould be performed
in order to stablish which technique has a better performancefor this inverseprob-
lem. For a large range of SNRs, both techniques give reconstructionswith MSEs
closeto the minimum attainable. Becauseof the similarity in the results, only the
reconstructedimagesselectedusing the L-curve will be showvn in the presen work.

Fourth, it can be seenfrom the reconstructedimagesfor SNR belon 30 dB start
to loosethe low amplitude pixels. This is also consisten with the discussionof the
e®ectof the regularization norm in Section4.1. Becausethe chosenregularization
method will penalizesolutionswith larger norms, the pixels of lower amplitudes will
be discardedbeforethe pixels of higher amplitudes beginto be penalized. This e®ect
is particularly noticeablein Figure 4.7 whenthe SNR drops from 30to 20 dB.

4.3 E®ect of the Focal Num ber of the Transducer

Just like the axial resolution of the systemis directly proportional to the band-
width of the transducer, the lateral resolution at the focal region depends on the
f4 of the transducer as given by Eqg. (2.8). Hence,increasingthe f; should have
an e®ectsimilar to decreasingits bandwidth. To test this hypothesis, another set
of simulations were performed with two simulated transducerswith f, of 2 and 3,
respectively, and the results are comparedwith the onesfor af, of 1. The simula-
tions were performedwith a bandwidth of 100%and the ROI at the focus. The MSE
versusSNR curves are shovn in Figure 4.9 and reconstructedimagesare shown in
Figures4.10and 4.11.

Someimportant obsenations canbe derived from the results of thesesimulations.
First, it canbe noticed from visual inspection that the B-mode imagesin Figure 4.11
for f» s of 2 and 3 do not shav a distinction betweenRegion1 and 2. This is not
the casefor the imagesreconstructedusing regularization. This is a clearexampleof
the possibility of extracting more information from the pulse-eto data than the one
that can be obtained using B-mode imaging.

Second,it canbe seenthat the e®ecton the performanceof the increasein focal
number is not nearly as critical as the one of the reduction of the bandwidth. For
example,for the secondre®ectivity distribution with a SNR of 30 dB, the normalized
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MSE increasedrom 20-30%to 45%whenthe f4 increasedrom 1to 3. This isto be
comparedagainstthe MSE of 90% for the caseof a bandwidth of 33% discussedn
Section4.2. There is a couple of obsenations that can explain this behavior. First,
the frequencyconent of the forward model is mostly determinedby the spectrum of
the acousticpulse. Thus, the increasein f» doesnot a®ectthe frequencyresponse
of the forward model as se\erely asthe reduction in the bandwidth. Secondthe f 4
a®ectsthe axial sizeof the focal region, asit was showvn in Eq. (2.7). Even though
the lateral resolution is worse,the coexcients of the forward model matrix are more
uniform with variations of depth for an increasedfocal number, and hencethere is a
courteracting e®ectthat might reducethe deterioration of the reconstructedimages.

Third, Figure 4.9 shows that there seemso be an stagnation in the MSE asthe
focal number increases. The curvesfor f4 s of 2 and 3 overlap, but the curve for
an f; of 1 is separatedfrom the other two curves except for values of SNR lower
than 20 dB for the rst re°ectivity distribution. This shaws that the e®ectof the
f» on the MSE is not monotonic. This e®ectshould be further studied. Finally,
the results shovn here are more qualitative than quartitativ e, that is, given that
only one noiserealization was usedfor ead ROI, the cortribution of this results is
showing the trends in the reconstructions. Future work shouldinvolve reconstructing
di®eren ROIs with seeral noiserealizationsin order to have a more represerativ e
guartitativ e description of the problem.

4.4 E®ect of the Distance of the ROl to the Focus of the
Transducer

B-mode imageswhenthe ROI is out of focussu®erfrom lossin spatial resolution
due to the beamspreading,asit wasdiscussedn Section2.1. Hence,it is of special
interest to analyzethe e®ectof the distance betweenthe ROI and the focus of the
transducer. For this purpose, another set of simulations was performed by using
transducerswith a bandwidth of 100%and an f4 of 1, with the ROI at 0, 2.5 and
5 mm beyond the focus of the transducer. The -6 dB depth of focusis given by Eq.
(2.7); because, = 0.25mm and f, = 1, the depth of focus for thesesimulations is
appraximately 1.8 mm. This meansthat targets beyond 1 mm away from the focus
lie outside the focal region. The reconstructedimagesare shovn in Figure 4.12 for
convertional imaging methods (B-mode and SAFT). The MSE curvesare shavn in
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Figure 4.13and the regularizationreconstructionsare shovn in Figures4.14and 4.15.

Someobsenations canbe madefrom the results. First, it canbe seenfrom Figure
4.12 that the B-mode imagesare of very poor quality when the ROI is beyond the
focusof the transducer,asexpected. SAFT processings able to improve the quality
of the imagewhen comparedto the unfocusedB-mode images,but only to a limited
extent becauseof the presenceof sidelokes. This phenomenonwas exploredin the
theoretical developmert of SAFT in Section 2.2.1. Also, in order to successfully
apply SAFT algorithms, the sampling aperture should satisfy Shannon'stheorem
[38], which states that there is a minimum coverage of the ROI neededin order
to have enoughdata and avoid aliasing. Becausethe number of A-Scanswas held
constart for all cases,Shannon'stheoremis not satis ed for large distancesand the
intensity level and sizeof the sidelokesincrease.For the image correspnding to the
secondre’ectivity distribution there is not a cleardistinction betweenthe concertric
regionsthat conformthe ROI. The distortion dueto the sidelobesincreaseswith the
distance betweenthe ROI and the focus of the transducer.

Second,the e®ectof the distance betweenROI and the focus of the transducer
on the MSE is not as critical asthe e®ectof the bandwidth asit can be seenfrom
Figure 4.13. Taking again as a referencethe secondreectivity distribution and
an SNR of 30 dB, the MSE increasesonly from 20-30%to 35%. In fact, there is
an overlapping of seweral of the MSE curves shown in Figure 4.13. For the second
re°ectivity distribution, there is an averageseparationof 5-10%in the MSE achieved
when the ROI is at the focus comparedto the unfocusedcases;the MSE curves
for 2.5 and 5 mm howewer are overlapping. In fact, for the seconddistribution,
there are valuesof the SNR belonv 30 dB for which a smaller MSE is achieved for
a distance of 5 mm than for 2.5 mm. This can be explained becausethe pulse-
edo data correspnding to the unfocusedcasescortain information on the frequency
domain comparableto the onefrom the focusedscenario. The frequencyinformation
is cortained on the pulse-ebo data but spreadedover the frequencyregionof support
of the imaging system. SAFT is only able to retrieve the information to a limited
extert. The reconstructionusing regularization appearsto be much more excient in
the task of extracting the information from the pulse-ebo data. The limiting factor
on the performanceof the reconstructions,asin the other simulations, is the amourt
of noisein the measuremets.
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Figure 4.12: Test 3 - Conventional imagesfor out of focus cases
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Test 3: MSE vs SNR for k=1
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This concludesthe presettation of the results of the simulations performed for
the presen work. The e®ectof parametersof both the regularization algorithm and
the imaging system(bandwidth, f, and distance betweenROI and the focus of the
transducer)wereanalyzedto explorethe feasibility and e®ectienessof regularization
reconstruction. In the next chapter, a closing discussionabout the results will be
preserted, together with suggestiondor future work directions.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The performanceof convertional imagingtechniquessud asB-mode and SAFT is
mainly limited by the sizeof the resolution cell of the imaging system. For monostatic
imaging with a focusedtransducer,the spatial resolution dependson the wavelength,
bandwidth and f» whenthe ROI is at the focus. When the ROI is out of focus, the
lateral resolution becomesworse becauseof the beam spreadingdue to di®raction.
The goal of this study was to analyze if regularization approades are a feasible
alternative to corvertional imaging techniques.

It was found from the simulations that more information can be extracted from
the pulse-ebo data using inverseproblemsand regularization approadhescompared
to corventional techniques when the SNR is high. Howeer, as the noise in the
measuremets increasesthe MSE of the reconstructionsalsoincreasesnd the quality
of the reconstruction degradesbhecauseof excesie ampli cation of the measuremen
noiseduring the inversionprocess.This medanismof imagedistortion is not presen
in corvertional imaging techniques.

The size of the resolution cell of the imaging systemalso has an impact on the
performanceof regularization techniquesby determining the lower threshold for the
SNR for which these approatesyield an image of better quality. This is a direct
result of a lower spatial frequencycortent of the forward model which results in a
more unstable inverseproblem. A larger bandwidth result in better performanceas
measuredby the MSE for xed SNR. The f; and the distance betweenthe ROI
and the focusdo not necessarilyhave a monotonic e®ecton the quality of the recon-
struction as measuredby the MSE. The optimum reconstructionfor the simulations
occurred for a bandwidth of 100%,f, of 1 and ROI at the focus. For thesesettings
and for valuesof SNR belowv 20 dB, se\eral of the image featureswere lost during
the reconstruction processin order to cortrol the distortion due to the noise.
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From the simulation resultsin Chapter 4, it was concludedthat the bandwidth
has the largest e®ecton the MSE, followed by the f,. The distance betweenthe
ROI and the focusof the transducerhad the lowest e®ect.In fact, the correspnding
MSE curvesoverlap for low valuesof SNR.

5.2 Future Work

5.2.1 Statistical analysis of the problem

As it has beenstated in Chapter 4, it is of special interest to perform se\eral
reconstructionswith the samesettingsusedin the presen work, usingdi®erer noise
realizationsand possiblydi®eren ROIs with the samescattererdensity per resolution
cell, in orderto have an statistically meaningfulevaluation of the e®ectof the f , and
the distancebetweenthe ROI and the focus.

5.2.2 Changes in the simulation setup

The simulation setup usedfor this work was only chosenfor simplicity in the for-
mulation of the problem, in orderto understandthe limitations of the inversioprocess
using regularization techniques. There are two factors that limit the e®ectienessof
the inversion:

1. The noisein the measuremets. In orderto discriminate and better compensate
for the noise,moremeasuremets canbe usedfor the sameamourt of unknowns.
This can be achieved in at leasta couple of ways:

2 The averageof seweral measuremets with the samecon guration usedin
the presen work can be usedinstead of a single set of measuremets. For
uncorrelated, zero-meanadditive noisethat would result in a reduction of
the noisevariance and hencean improvemern on the SNR. Howewer, this
approad hastwo drawbadks: rst, thereis anincremert in the acquisition
time, and second,in certain imaging situations (sud as biomedicalimag-
ing) the ROI is not stationary, so both the noiselessdata and the noise
changewith eath measuremen

2 Instead of usinga monostaticcon guration, morethan onereceiwer canbe
usedfor eat transmission[56],[57]. This hasthe advantage of providing
more measuremets for ewvery transmission. Related researt topics are
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the determination of the number and spatial distribution of the receivers
neededto achieve an optimum reconstruction.

2. The sizeof the resolution cell. From the analysisin Chapter 4 it wasconcluded
that the bandwith is the limiting physical factor in the reconstructions. To
overcomethis, a seriesof transducerswith di®eren frequencybands can be
usedasin [20].

5.2.3 Changes in the reconstruction algorithm

The choiceof the regularization algorithm hasalsoan impact on the performance
of the reconstructions. Even by xing the regularization method to be generalized
Tikhonov, more variants can be explored. For example,region-basedregularization
cost terms can be addedto the minimization problem usedfor the reconstructions.
An expected trade-o®is a decreasen the MSE versusan increasein the cortrast
of the reconstructionsfor low values of SNR when comparedto the regularization
costusedfor this work. A combination of region-basedand identit y costterms have
beensuccessfullyusedin radar imaging [259. An inmediate problem in using more
than one regularization cost term is the needto determine more than one regular-
ization parameter ®, so that multidimensional versionsof the parameter selection
techniquesare needed.This topic hasbeenaddressedn other works, sud as[58] for
multidimensional GCV and [59] for multidimensional L-curve.

5.2.4 E®ect of the grid

With ewery discretization problem there is a tradeo® involving the size of the
grid to use. A very coarsegrid will result in a bad represemation of the cortinuous
measuredeld andthe t to the measureddata will be poor. Thereis animprovemert
asthe grid becomesner up to a certain limit, becausethe measureddata doesnot
contain enoughinformation to resole featuresbeyond a certain limit. As a result,
the inverseproblem becomeamore unstable becausdt becomedoo overdetermined.
Hence,there existsan optimum samplinggrid that dependson the forward model. A
recert exampleinvolving grid size selectionin inverseproblemsusing regularization
can be found in [6Q].
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5.2.5 Matrix-free solution to the problem

A problem with the inverseproblem formulation usedin the presen work is the
computational costof the algorithm. The simulations of Chapter 4 wererun on a dual
processoiOpteron 248computerwith a 2.26 GHz clock and 4 GB of memoryrunning
on Linux FedoraCore2. For the 49by 49imagesusedin the simulations, the inversion
took an averageof 60 iterations to convergefor xed regularization parameters. The
inversionalgorithm wascoded on Matlab version6.1. Eadh iteration took 3.8 seconds
for a total averagetime of 228 secondsusing 7% of the available memory Howewer,
the computation time and memory usageincreasewith the number of unknowns. For
an image of n by m pixels, the sizeof the matrices usedfor the inversion processis
(nm)?2. Doubling the size of the imagein both dimensions,that is, reconstructing
an image of roughly 100 by 100 pixels, would demandan increasein the size of the
matricesby a factor of 16. Eventhough the sparcity of the inverseoperator increases
with the sizeof the ROI due to the nite sizeof the resolution cell, it can be easily
seenthat a matrix formulation is not excient in term of memory management which
imposesa limit on the number of unknowns that can be solved. This problem is of
special importance becausefor real imaging scenariosthe ROI is three-dimensional,
which increasesthe dimensionality of the problem. To overcomethis limitation,
regularizediterative matrix-free formulations can be used. Distributed approades
for large matrix-free equation systemshave beenreported to solwe for even millions
of unknowns [61]. Relatedreseart topics involve the study of the corvergenceof the
iterativ e algorithm asin [62].

5.2.6 Changes in the forw ard model

The e®ectof modelling errors have alsoto be considered.Se\eral simpli cations
wereassumedor the presen work, i.e., the speedof soundwasassumedo be homo-
geneousattenuation and non-linear propagation were not considered,and multiple
re°ections were neglected. In order to apply this algorithm in a real imaging sce-
nario, the impact of all of theseitems have to be studied. More than quarntifying the
distortion that this simpli cations generatefor real data, it is of special interest to
incorporate them into the forward model. For example,it is a well known fact that
the quality of SAFT and array imaging degradesecauseof phaseaberration [63] due
to inhomogeneitiesin the speedof sound. The feasibility of using inverseproblems
approatesto solwe for this particular issueis a relevant topic of future researab.
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