
 

 

 

 

CHAPTER 7 

EFFECT OF kaeff VALUES AND FREQUENCY RANGE USED IN 
ESTIMATION  

 

While performing the analysis of the different signal processing techniques discussed in 

Chapter 6, it was noted that the precision of estimates from the basic Spectral Fit algorithm were 

better for the larger scatterer size of 45 µm.  For example, the smallest percent deviation of 

scatterer size (precision) in Figure 6.12 is ~40% for the 25 µm scatterers, whereas the percent 

deviation at the same window length in Figure 6.13 is ~15% for the 45 µm scatterers.  This calls 

into question the previous choice of kaeff values that attempted to center the bandwidth near a 

kaeff value of 0.8 (i.e., a frequency of 8 MHz for a scatterer size of 25 µm).  Initially, this kaeff 

value had been selected because the optimal range for kaeff values had been previously reported 

as being from 0.5 to 1.2 [Insana and Hall, 1990].  Hence, in this chapter the impact the choice of 

kaeff values has on the estimation scheme is analyzed.  The analysis is done for both the Spectral 

Fit algorithm that estimates both scatterer size and total attenuation as well as for the traditional 

minimization algorithm that assumes the attenuation is already known.  The analysis only 

considers scatterers with Gaussian impedance distributions.   

 

7.1 kaeff  Range Results for the Spectral Fit Algorithm  

 In order to evaluate the impact the kaeff values have on the Spectral Fit algorithm, many 

different sets of simulations were performed.  In the simulations, a weakly focused f/4 transducer 

with a focal length of 5 cm was once again used to sonify an infinite half-space with scatterers 

placed at a density of 35/mm3.  Also, 1000 independent scatterer distributions were used for each 

of the simulated cases, and a waveform was generated for each distribution.  A sampling 

frequency of 53 MHz was used when “digitizing” each of the waveforms.  The resulting 1000 

independent waveforms were combined into 40 sets with 25 waveforms per set.  The 25 

waveforms in each set were windowed with a hamming window whose length varied from 1 to 8 
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mm and averaged in the normal spectral domain.  The averaged spectrum was then compensated 

for windowing and used in the Spectral Fit algorithm to obtain an estimate for total attenuation α 

and effective scatterer size aeff.  The effect of using different kaeff ranges was evaluated by 

varying the attenuation of the half-space, the scatterer size, the bandwidth of the source, and the 

amount of electronic noise added to the simulated waveforms before processing.   

 

7.1.1 Results for different source bandwidths 

 The first case that will be analyzed involved varying the bandwidth of the source and the 

scatterer size while maintaining the same value for the half-space attenuation.  In order to 

facilitate the analysis, the attenuation selected for the half-space was 0 dB/cm/MHz, so that the 

attenuation would not cause any downshift in the backscattered spectrum.  However, the Spectral 

Fit algorithm still solved for the attenuation as if it was unknown.  The bandwidth of the source 

was varied by changing the bandwidth of the Rayleigh distribution of the filtering characteristics 

for the source (i.e., H(f)).  In the simulations, H(f) was given by  

H f

f f f

f f f

R

R

f

R

R

b g =
⋅ −

−F
HG

I
KJ

F
HG

I
KJ

⋅ −
−F
HG

I
KJ

F
HG

I
KJ

F
HGG

I
KJJ∀

exp

max exp

σ

σ

2

2
,                                  (7.1) 

where fR was 8 MHz and σR was varied as 2, 4, and 6 MHz in order to change the bandwidth of 

the source.  Then, the frequency range (i.e., range of kaeff values) used in the minimization 

routine was given by the set of all frequencies corresponding to signal levels greater than 
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as was discussed in Chapter 5.  For each source bandwidth, simulations were performed with 

scatterer effective radii varying from 5 to 105 µm.  However, within each simulation, every 

scatterer had the same size.   

 The results at each bandwidth for a window length of 3 mm for all of the scatterer sizes 

are shown in Figure 7.1.  There is a significant degradation in both accuracy and precision for the 
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estimates at the same scatterer size using the smaller source bandwidths.  In addition, the 

precision (Figure 7.1b) and accuracy (Figure 7.1a) of the size estimates improves with increasing 

scatterer size indicating a dependence on the range of kaeff values used in the minimization 

routine.  However, the precision (Figure 7.1d) of the total attenuation estimates degrades slightly 

with increasing scatterer size.  Because it was shown in Chapter 4 that increases in scatterer size 

slightly reduce the bandwidth, the precision of the total attenuation estimate might only depend 

on the frequency range used in the minimization routine. 

 
Figure 7.1: Simulation results for different source bandwidths for (a) the percent error in the 

average scatterer size, (b) the percent deviation in the scatterer size, (c) the error in the average 
total attenuation, and (d) the deviation in the total attenuation for different scatterer sizes plotted 

versus scatterer size. 
 

 In order to validate the dependence of the size estimate on the range of kaeff values and 

the dependence of the attenuation estimate on the range of frequencies, the results shown in 

Figure 7.1 were replotted in Figure 7.2 versus ∆kaeff (maximum value of kaeff  minus minimum 

value of kaeff) and frequency range (maximum frequency minus minimum frequency) for the size 

and attenuation estimates, respectively.  The frequency range and ∆kaeff range determined for 

Figure 7.2 was the ideal range given by the set of all frequencies for which 
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because for these simulated cases no noise had been added to the waveforms.  Clearly from 

Figure 7.2, the accuracy (Figure 7.2a) and precision (Figure 7.2b) of the size estimates exhibit a 

strong and consistent dependence on ∆kaeff as is indicated by the overlapping curves.  Likewise, 

the accuracy (Figure 7.2c) and precision (Figure 7.2d) of the attenuation estimates exhibit a 

strong dependence on the frequency range used in the minimization.  However, the relationship 

between the accuracy of the attenuation estimates and the frequency range used by the 

minimization is not as consistent (i.e., curves do not overlap) as the other cases shown in Figure 

7.2. 

 
Figure 7.2: Simulation results for different source bandwidths for (a) the percent error in the 

average scatterer size, (b) the percent deviation in the scatterer size, (c) the error in the average 
total attenuation, and (d) the deviation in the total attenuation for different scatterer sizes plotted 

versus ∆kaeff and frequency range used in minimization. 
 

7.1.2 Results for different half-space attenuations 

 After showing that the accuracy and precision of the estimates were dependent on ∆kaeff 

and the frequency range used when varying the bandwidth of the source, changes in the ∆kaeff 

and the frequency range were investigated to determine if they could also explain the previously 

observed loss in precision with increasing attenuation (Chapter 5).  Hence, simulations were 

performed for half-space attenuation of 0.3 dB/cm/MHz, 0.5 dB/cm/MHz, and 1 dB/cm/MHz.  

For each value of half-space attenuation, the bandwidth of the source was held constant and set 

by using a σR value of 6 MHz in Equation (7.1).  The frequency range used in the minimization 
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routine, however, would still be decreased  at large half-space attenuations by the corresponding 

down shift of the spectrum.  In addition, the frequency range would also be decreased by 

increasing scatterer size.  For the 0.3 dB/cm/MHz half-space attenuation, the simulation was 

repeated for scatterer sizes ranging from 5 µm to 75 µm.  Likewise, for the 0.5 dB/cm/MHz and 

1 dB/cm/MHz half-space attenuations, the scatterer sizes ranged from 5 µm to 85 µm and 5 µm 

to 150 µm, respectively. Every scatterer was the same size for any given simulation. 

The scatterers once again had Gaussian impedance distributions and were placed at a 

density of 35/mm3.  One thousand independent scatterer distributions were generated, grouped 

into 40 sets of 25 waveforms, windowed with a hamming window (length varied from 1 to 8 

mm), and then averaged in the normal spectral domain.  The convolution effects of windowing 

were compensated, and the frequency range used in the minimization routine for the Spectral Fit 

algorithm was given by Equation (7.2).  

The results for the different scatterer sizes and attenuations for a hamming window length 

of 3 mm are shown in Figure 7.3. In addition to the three half-space attenuation cases just 

described, we have also included in the plot the half-space attenuation of 0 dB/cm/MHz at a σR 

value of 6 MHz from Section 7.1.1 as well as the results obtained for half-space attenuations of 0 

to 1 dB/cm/MHz for a scatterer size of 25 µm that had been used to evaluate the basic Spectral 

Fit algorithm in Chapter 5.  However, this time the signals were averaged in the normal spectral 

domain, the convolution effects of windowing were corrected, and the frequency range used in 

the minimization routine was given by Equation (7.2).  Once again, the accuracy (Figure 7.3a) 

and precision (Figure 7.3b) of the size estimates exhibit a strong and consistent dependence on 

∆kaeff as is indicated by the overlapping curves.  Likewise, the precision of the total attenuation 

estimate seems to exhibit a consistent dependence on the frequency range used to perform the 

minimization. Therefore, the degradation in estimator performance observed previously for 

larger attenuations was due entirely to a smaller ∆kaeff and a smaller frequency range.  Hence, the 

amount of attenuation of the half-space, taken independently, relative to the attenuation of the 

medium used to acquire the reference spectrum (i.e., 0 dB/cm/MHz for water surrounding rigid 

plate) does not effect the performance of the Spectral Fit algorithm. 
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Figure 7.3: Simulation results for different half-space attenuations for (a) the percent error in the 
average scatterer size, (b) the percent deviation in the scatterer size, (c) the error in the average 

total attenuation, and (d) the deviation in the total attenuation plotted versus ∆kaeff and the 
frequency range used in minimization. 

 
 To further demonstrate the lack of dependence of the algorithm on the attenuation of the 

half-space relative to the reference medium, a new reference waveform was acquired.  This time, 

the attenuation of the medium between the source and reference plate placed at the focal plane 

was changed from 0 dB/cm/MHz (water) to 0.3 dB/cm/MHz.  The new reference waveform was 

then used in the Spectral Fit algorithm to estimate total attenuation and scatterer size for a half-

space with an attenuation of 0.3 dB/cm/MHz containing Gaussian scatterers with radii of 25 µm.  

The results for both the lossless (water) and lossy reference waveforms for this case are shown in 

Figure 7.4.  The results for the two different reference waveforms are identical confirming that 

attenuation of the half-space relative to the reference does not matter. 

 

7.1.3 Results for different levels of electronic noise 

 In Chapter 5, the performance of the Spectral Fit algorithm was also degraded by adding 

white “electronic” noise to the simulated waveforms in addition to the degradation observed by 

increasing the attenuation of the half-space.  Hence, after completing the investigation on the 

impact of attenuation discussed in Section 7.1.2, the impact of adding white, Gaussian 

distributed, noise to the acquired waveforms was investigated.  The waveforms selected for the 
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investigation were from the earlier simulation study (Section 7.1.1) for a half-space attenuation 

of 0 dB/cm/MHz, an σR of 6 MHz, and a scatterer effective radius of 105 µm.  The amount of 

noise added to the waveforms was set by specifying the noise power relative to the signal 

backscattered from the reference plate placed at the focal plane in a water bath so that all 1000 of 

the generated waveforms would receive the same amount of additive noise.  The noise power 

was varied in a series of simulations so that the mean value of SNR, calculated according to 

Equation (4.20), varied from 36 to 3 dB. 

 
Figure 7.4: Simulation results when the reference medium has an attenuation of 0.3 dB/cm/MHz 
(lossy) and 0 dB/cm/MHz (loss less)  showing (a) the percent error in the average scatterer size, 

(b) the percent deviation in the scatterer size, (c) the error in the average total attenuation, and (d) 
the deviation in the total attenuation plotted versus window length for a half-space with an 

attenuation of 0.3 dB/cm/MHz containing 25 µm scatterers. 
 

 The results for all of the different noise levels at a hamming window length of 3 mm are 

shown in Figure 7.5.   Also, the results without any noise for σR values of 2 MHz, 4 MHz, and 6 

MHz at an attenuation of 0 dB/cm/MHz from Figure 7.2 and the results for an attenuation of 1 

dB/cm/MHz from Figure 7.3 are replotted in Figure 7.5 for the sake of comparison.  Once again, 

the accuracy and precision of the scatterer size estimate for the noisy signals has the same 

dependence on ∆kaeff that was observed in the earlier simulations (Figure 7.5a and 7.5b).  

Similarly, the accuracy and precision of the total attenuation estimate also appear to have the 

same dependence on the frequency range that was observed in the earlier simulations shown in 
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Figure 7.2 that varied the value of σR.  However, the precision of the attenuation estimate for the 

half-space attenuation of 1 dB/cm/MHz at smaller frequency ranges (i.e., less than 6 MHz) 

appears to be better than that expected by the other simulations.  This difference was not noticed 

previously because of the gap in data for the frequency range from 4 to 6 MHz.  From this we 

can conclude that although the accuracy and precision of the attenuation estimate are improved 

with increasing frequency range used to obtain the estimate, the exact amount of improvement 

may be difficult to predict from the frequency range alone. 

 
Figure 7.5: Simulation results for different levels of electronic noise for (a) the percent error in 

the average scatterer size, (b) the percent deviation in the scatterer size, (c) the error in the 
average total attenuation, and (d) the deviation in the total attenuation plotted along with results 
for different bandwidth sources and a half-space attenuation of 1 dB/cm/MHz versus ∆kaeff and 

the frequency range used in minimization. 
 

7.2 kaeff  Range Results for the Traditional Algorithm 

 In the previous section, it was observed that the accuracy and precision of the size 

estimates were improved as we increased the size of the ∆kaeff range used in the minimization 

routine.  In this section, the traditional estimation scheme where the attenuation is known a 

priori was investigated to determine if the same trend in improvement was also found.  The 

relationship between frequency range and precision of the size estimate using the traditional 

estimation scheme has been investigated briefly by other authors [Chaturvedi and Insana, 1996; 

Wear, 2001b].  However, in their analysis they only looked at the impact of frequency range and 

not the ∆kaeff range.  In addition, although Chaturvedi and Insana’s results for two different 
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scatterer sizes suggest a consistent dependence of precision on the ∆kaeff range, the results were 

not presented in a form to facilitate a comparison.  Hence, the comparison was performed using 

new simulation results. 

 Before performing the comparison, however, the initial kaeff values used in the estimate 

were investigated to determine if they should be greater than 0.5 as had been previously reported 

[Insana and Hall, 1990].  Hence, simulations were performed where the ∆kaeff range was set to 

be one, and the initial kaeff value was varied from 0.1 to 2.  The frequency range used in the 

minimization was manually selected for these simulations, but care was still taken to insure that 

the selected frequencies corresponded to signal values greater than the noise floor of the 

simulated waveforms.  The half-space used in the simulations had an attenuation of 0 

dB/cm/MHz and once again contained Gaussian scatterers with an aeff of 25 µm at a density of 

35/mm3.  The sources used in the simulations had very large bandwidths that would not be 

physically realizable with a real source so that the large span of kaeff values could be tested.  The 

bandwidth was set by using a filtering function given by 
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while still shock exciting the simulated transducers (i.e., Vinc(ω)=1).  Three different sources 

were used in the simulations with f-numbers of 1, 2, and 4.  The effects of focusing and 

attenuation were removed using the generalized attenuation-compensation function discussed in 

Chapter 2.  

Once again, 1000 backscattered waveforms for 1000 independent scatterer distributions 

were generated and combined into 40 sets with 25 waveforms per set for each source.  However, 

the sampling rate selected when “digitizing” the signal for the simulated waveforms was 125 

MHz, not the 53 MHz used previously, in order to accommodate the large bandwidth of the 

transducer.  Also, no “electronic” noise was added to the simulated waveforms.  The 25 

waveforms in each set were windowed with a hamming window of length 3 mm.  The averaged 

spectrum was then compensated for windowing using the same compensation technique that was 

described in Chapter 5 for the Spectral Fit Algorithm.  
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The accuracy and precision results for all three sources for the different initial kaeff values 

are shown in Figure 7.6.  The precision of the size estimate for all of the sources appears to be 

approximately the same for initial kaeff values between 0.5 and 2, and the precision of the 

estimates degrades significantly for smaller initial kaeff values (Figure 7.6b).  Likewise, the 

accuracy of the f/1 source follows a similar trend (Figure 7.6a).  These results are in agreement 

with the lower limit of 0.5 reported by Insana and Hall [1990].  Because their upper limit of 1.2 

resulted from using the approximate form factor for glass bead scatterers, no upper limit was 

expected in the results shown in Figure 7.6.  From these results, we conclude that care should be 

taken to insure that the initial kaeff value is always larger than 0.5 when making further 

assessments of the traditional algorithm. 

 
Figure 7.6: Simulation results for different initial kaeff values from the traditional estimation 
algorithm (α known) for different f-number transducers showing (a) the percent error in the 

average scatterer size and (b) the percent deviation in the scatterer size. 
 

Once the smallest acceptable value for kaeff of 0.5 had been determined, the impact of the 

range of kaeff values could be assessed.  The assessment was done by reanalyzing the simulated 

waveforms discussed in this section by manually selecting the ∆kaeff range from 0.25 to 2.5.  For 

all of these ranges, the central kaeff value was maintained at 1.75 to insure that the initial kaeff was 

always greater than 0.5.  The results for all three of the different f-number sources are shown in 

Figure 7.7.  From Figure 7.7b, it is clear that increasing the ∆kaeff range used in the traditional 

estimation algorithm results in a dramatic improvement in precision similar to that observed for 
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the Spectral Fit algorithm.  However, the accuracy of the estimates (Figure 7.7a) does not appear 

to be significantly influenced by the ∆kaeff range used in the traditional estimation algorithm.  

The overall precision and accuracy is much better in the traditional algorithm as compared to the 

Spectral Fit algorithm because the attenuation is known a priori for the traditional algorithm.  

Hence, the curves from the two algorithms can only be compared qualitatively. 

 
Figure 7.7: Simulation results for different ∆kaeff ranges from the traditional estimation algorithm 

(α known) for different f-number transducers showing (a) the percent error in the average 
scatterer size and (b) the percent deviation in the scatterer size. 

 
7.3 Initial kaeff  Results for the Spectral Fit Algorithm 

In the previous assessment of the Spectral Fit algorithm, the dependence of the accuracy 

and precision of the scatterer size and attenuation estimates on the frequency range and ∆kaeff 

values was determined by varying the bandwidth of the source, the scatterer size, the amount of 

“electronic” noise, and the attenuation of the half-space region.  Regardless of these parameters, 

the largest reasonable frequency range was selected for the estimates based on Equation (7.2).  

As a result, the location of the frequencies (i.e., initial kaeff value) to be used by the estimator was 

not precisely controlled although the overall range could be varied.  After verifying that the 

initial value for kaeff used in the traditional estimation scheme should be greater than 0.5, the 

Spectral Fit algorithm was investigated to determine if a similar lower limit existed.  Hence, in 

this section a set of simulations is discussed where the initial and final values of kaeff were 

manually selected so that the location of the ∆kaeff could be precisely varied for the Spectral Fit 
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algorithm.  However, care was still taken to insure that the frequency range used in the 

minimization did not extend into spectral regions dominated by noise. 

 In order to vary the location of the ∆kaeff while still maintaining a ∆kaeff that would yield 

reasonable accuracy and precision, an ultrasound source with a very large frequency bandwidth 

was desired.  Hence, simulations were performed using a source with a σR of 18 MHz and a fR of 

8 MHz in the filtering function given by Equation (7.1).  It is not possible using current 

technology to obtain a real source with this large a bandwidth.  However, a bandwidth of this 

duration was required for the analysis.  The source had an f-number of 4 and a 5 cm focal length 

as well.  

The idealized source sonified a half-space containing scatterers with Gaussian impedance 

distributions with effective radii of 25 µm at a density of 35/mm3.  The half-space had an 

attenuation of 0 dB/cm/MHz.  Once again, 1000 backscattered waveforms for 1000 independent 

scatterer distributions were generated and combined into 40 sets with 25 waveforms per set.  

However, the sampling rate selected when “digitizing” the signal for the simulated waveforms 

was 160 MHz instead of the 53 MHz used previously in order to accommodate the large 

bandwidth of the transducer.  Also, no “electronic” noise was added to the simulated waveforms.  

The 25 waveforms in each set were windowed with a hamming window with a length of 3 mm 

and averaged in the normal spectral domain.  The averaged spectrum was then compensated for 

windowing and used in the Spectral Fit algorithm to obtain an estimate for total attenuation and 

effective scatterer size. 

In addition to the idealized source just described, the simulated f/4 data used previously 

to assesses the impact of the kaeff values on the performance of the traditional algorithm (i.e., 

source filtering function given by Equation (7.4)) was also reanalyzed using the Spectral Fit 

algorithm.  For both idealized sources, ∆kaeff was set to one and the initial kaeff value was varied 

over the largest possible range while still avoiding the sections of the spectrum dominated by 

noise.  Because the scatterer size, attenuation, frequency range used in the minimization, and 

focal length for both of these simulated sources were identical, the accuracy and precision for 

both idealized sources should have been the same.  However, this was not the case as is shown in 

Figure 7.8. 
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Figure 7.8: Simulation results for different source filtering functions H(f) for (a) the 

percent error in the average scatterer size, (b) the percent deviation in the scatterer size, (c) the 
error in the average total attenuation, and (d) the deviation in the total attenuation plotted versus 

the initial kaeff value and the initial frequency used in minimization for a ∆kaeff of 1. 
 

Begin by considering the precision results for the attenuation estimate shown in Figure 

7.8d.  For both sources, the precision initially degrades with increasing initial frequency, peaks, 

and then improves as the initial frequency continues to increase.  Hence, the improved precision 

for the attenuation estimate for a half-space attenuation of 1 dB/cm/MHz as compared to 0 

dB/cm/MHz for the same frequency range shown in Figure 7.5 may be due to the smaller initial 

frequency used in the estimate due to the shifting of the spectrum to lower frequencies by the 

attenuation.  However, the location of the peak is different for the two different sources.  Hence 

the source whose filtering function is given by Equation (7.4) has better precision at smaller 

values of the initial frequency.   

 Likewise, the precision of the scatterer size estimate (Figure 7.8b) appears to degrade 

slightly for small values of the initial kaeff value as the initial kaeff value is increased, plateau at a 

constant value, and then exhibit dramatic improvement in precision for larger initial kaeff values.  

Once again, the onset of the dramatic improvement in precision for the size estimate is different 

for the two sources and corresponds to the improvement observed in the precision of the 

attenuation estimate.  The improvement in precision for both estimates also appears to correlate 

with a slight improvement in the accuracy of the estimates (Figures 7.8a and 7.8c), although in 
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general the accuracy of the estimates does not appear to be strongly affected by the initial kaeff or 

frequency value. 

 The fact that the deviation of the estimates for the two different sources peak at different 

locations is very puzzling.  All of the previous theory predicted that once the backscattered 

spectrum was divided by the reference spectrum and an appropriate range of frequencies was 

selected for the minimization, the frequency response of the source would not affect the 

estimates [Lizzi et al., 1997b; Chaturvedi and Insana, 1996; Wear, 2001b; Insana et al., 1990].   

Therefore, the first goal was to determine if the difference in the peaking was a simulation 

artifact that would not be present in signals from real tissue. One possibility is that the peaking 

results from having too few scatterers per resolution cell because the transmitted pulse for the 

Rayleigh spectrum (i.e., Equation (7.1)) had larger support in the time domain by approximately 

a factor of 2.  As a result, the Rayleigh spectrum would always have more scatterers per 

resolution cell and would subsequently peak at a higher value for the initial frequency if the 

peaking were related to the number of scatterers per resolution cell.   

 In order to test this possibility, more simulations were performed using the source with 

the filtering function given by Equation (7.4).  The scatterer size, half-space attenuation, and 

∆kaeff range used in the minimization routine were identical to the results presented in Figure 7.8.  

The only difference was that the scatterer number density was increased from 35/mm3 to 

70/mm3.  If the hypothesis relating the peaking to the scatterer number density was correct, then 

the peak in the deviation should be shifted to higher values of the initial frequency in these 

simulations.  The results for the higher number density are shown with the results for the original 

number density in Figure 7.9. The results for the two different number densities are 

indistinguishable.  Hence, the peak in the deviation is not related to the number of scatterers per 

resolution cell.  

 To further explore the observed improvement in precision with increasing initial 

frequency, more simulations were performed using a scatterer size of 50 µm instead of 25 µm.  

Once again, the simulations were performed using the source with the filtering function given by 

Equation (7.4) and a lossless half-space with scatterers positioned at a density of 35/mm3.  The 

hamming window used to gate out the region of interest also had a length of 3 mm.  Because the 

scatterer size was larger, there were two reasonable choices for the size of the ∆kaeff range used 

in the minimization routine. A ∆kaeff =1 could be selected, as was done in the other simulations 
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resulting in a smaller overall frequency range to be used in the estimate, or a ∆kaeff =2 could be 

selected, which would use the same size frequency range as had been used for the smaller 

scatterer size estimates.  In the simulations, both possibilities were considered while using the 

widest range of initial kaeff values.  The results for the simulations are shown in Figure 7.10 

along with the previous results for the 25 µm scatterer using the filtering function given by 

Equation (7.4).  Plots (a) and (c) show the exact deviation in the scatterer size and attenuation 

estimates, whereas plots (b) and (d) show the deviation normalized with respect to the largest 

value of the deviation.  The normalization was done so that the results for the different ∆kaeff 

values could be compared on the same graph. 

 
Figure 7.9: Simulation results for different scatterer number densities for (a) the percent error in 

the average scatterer size, (b) the percent deviation in the scatterer size, (c) the error in the 
average total attenuation, and (d) the deviation in the total attenuation plotted versus the initial 

kaeff value and the initial frequency used in minimization for a ∆kaeff of 1. 
 

From these curves, it is clear that the ∆kaeff value or total frequency range does not 

influence the location of the deviation peak because the peak occurs at the same location for both 

∆kaeff values.  Furthermore, it appears that it is the initial frequency used in the minimization as 

opposed to the center frequency that sets the location of the deviation peak because the center 

frequency would also be altered by the ∆kaeff value.  Lastly, these curves seem to indicate that 

the location of the deviation peak is not affected by the scatterer size.  Although the peak has 

been shifted to slightly lower frequencies for the 50 µm scatterers, this shift may correspond to a 
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slight down shift in the backscattered spectrum due to the larger scatterer size.  More will be said 

about the relationship between the peak in the backscattered spectrum and the peak in the 

deviation later in this section. 

 
Figure 7.10: Simulation results for different scatterer sizes (25 and 50 µm) for (a) the percent 

error in the average scatterer size, (b) the percent deviation in the scatterer size, (c) the error in 
the average total attenuation, and (d) the deviation in the total attenuation plotted versus the 

initial kaeff value and the initial frequency used in minimization for a ∆kaeff values of 1 and 2. 
 

After considering the effect of scatterer size on the location of the deviation peak, the 

location of the peak was investigated to determine if it could be correlated with either the 

attenuation estimate or the scatterer size estimate individually.  Hence, the simulation data for the 

lossless half-space containing 25 µm scatterers at a density of 35/mm3 for the source with 

filtering characteristics given by Equation (7.4) and the Rayleigh source with a σR of 18 MHz 

and a fR of 8 MHz in the filtering function given by Equation (7.1) were re-analyzed.  The 

analysis was redone twice.  First, the algorithm was supplied the correct attenuation and solved 

only for the scatterer size as was done in Section 7.2.  Then, the algorithm was supplied the 

correct scatterer size and solved only for the attenuation.  For both situations, the ∆kaeff used in 

the minimization was manually set to 1 while the initial kaeff value was varied over the largest 

possible range.  Once again, a hamming window with a length of 3 mm was used to gate the time 

domain waveforms.  The results for solving for the scatterer size only are given in Figure 7.11 

while the results for solving for the attenuation only are given in Figure 7.12.   
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Figure 7.11: Simulation results for different initial kaeff values when α is known (traditional 

estimation algorithm) for different source filtering functions showing (a) the percent error in the 
average scatterer size and (b) the percent deviation in the scatterer size. 

 

 
Figure 7.12: Simulation results for different initial kaeff values when aeff is known for different 

source filtering functions showing (a) the error in the average total attenuation and (b) the 
deviation in the total attenuation. 

 
When the attenuation is known (i.e., solve only for scatterer size), there is no peak in the 

deviation of the estimates and the two different sources yield the same accuracy and precision for 

all of the different initial kaeff values.  When the scatterer size is known (i.e., solve only for 
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attenuation), a slight peak is observable in the deviation.  In addition, the location of the peak is 

different for the two sources considered.  However, the locations of the deviation peaks in Figure 

7.12b are different from the locations of the corresponding peaks in Figure 7.8d when both 

scatterer size and attenuation were estimated.  In addition, the peak for the source with the 

Rayleigh distribution has approximately the same value as the peak for the source whose H(f) is 

given by Equation (7.4), whereas previously (Figure 7.8) the former had a much larger peak 

value.  Also, the precision of the estimates for both sources at smaller initial frequency values 

(i.e., before the peak) do not overlap whereas before (Figure 7.8) the values of precision were 

very similar for smaller initial frequencies. 

From these observations, it is concluded that the occurrence of the deviation peak cannot 

be correlated independently with the scatterer size estimate.  The occurrence and location of the 

deviation peak may be related more to the attenuation estimate, but the differences between the 

results shown in Figures 7.12 and 7.8 would suggest that the peak still cannot be independently 

correlated with the attenuation estimate.  Regardless, the estimation of both parameters tends to 

enhance the relative maximum value of the deviation peak as well as shift the peak’s location to 

higher values of initial frequency. 

The last issue regarding the initial kaeff value that was addressed in this investigation 

involved determining whether the deviation peak could be observed in “real” sources rather than 

the artificially large bandwidth sources considered thus far in this section.  Hence, some of the 

previously acquired simulation data for a source with a filtering function given by 
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was reanalyzed.  In particular, we considered the data for when this source sonified a lossless 

half-space containing 105 µm scatterers, a lossless half-space containing 55 µm scatterers, and a 

half-space with an attenuation of 0.5 dB/cm/MHz containing 85 µm scatterers.  Once again, the 

∆kaeff used in the minimization was manually set to one, the initial kaeff value was varied over the 

largest possible range, and a hamming window with a length of 3 mm was used to gate the time 

domain waveforms.  The results for each case are shown in Figure 7.13.  Once again, there is a 

peak in the deviation of the attenuation estimate that is located at a different location for all three 
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cases corresponding to a plateauing followed by dramatic improvement in precision of the 

scatterer size estimate.  Also, the improvement in the precision of the estimates is also 

accompanied by an improvement in the accuracy of the estimates confirming that the deviation 

peak should also occur for a realizable source. 

 
Figure 7.13: Simulation results for realizable source filtering function H(f) for scatterer sizes of 
105 µm and a half-space attenuation of 0 dB/cm/MHz, 55 µm and a half-space attenuation of 0 

dB/cm/MHz, and 85 µm and a half-space attenuation of 0.5 dB/cm/MHz for (a) the percent error 
in the average scatterer size, (b) the percent deviation in the scatterer size, (c) the error in the 

average total attenuation, and (d) the deviation in the total attenuation plotted versus the initial 
kaeff value and the initial frequency used in minimization for a ∆kaeff of 1. 

 

 At this point, the relationship between the backscattered spectrum and the location of the 

α deviation peak that was observed throughout the course of the analysis of the initial frequency 

is summarized in Figure 7.14.  In this plot, the ideal backscattered spectrum peak was found by 

multiplying the reference signal from the rigid plane placed at the focal plane for each source by 

, where ak kao eff
4 2

0 827 4exp .− −d ie αzT j eff, α, and k were the correct values for the scatterer size, 

attenuation, and wavenumber for the half-space, respectively, and then finding the frequency 

corresponding to the maximum value.  The location of the α deviation peak (i.e., corresponding 

initial frequency) found for all of the previous cases where both scatterer size and attenuation 

were estimated was then plotted against each ideal backscattered spectrum peak.  The resulting 

points were then fit by a line that is also shown in Figure 7.14. 
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Figure 7.14: Relationship between ideal backscattered spectrum peak and location of a deviation 

peak for all simulated cases (x) shown with linear fit (solid line). 
 

From this figure, it is clear that there is a direct correspondence between the location of 

the α deviation peak and the ideal backscattered spectrum peak.  This correspondence does not 

seem to be affected by source bandwidth, half-space attenuation, scatterer size, scatterer number 

density, sampling rate of RF waveforms, or the duration of the frequency range used to perform 

the minimization.  Unfortunately, in the cases considered thus far, the dramatic improvement in 

precision following the α deviation peak occurs on the trailing edge of the backscattered 

spectrum that is not usable once electronic noise has been added to the signals.  However, it may 

be possible to design a transmitted spectrum using some type of coding scheme to capitalize on 

the observed improvement in precision in the future.  In addition, although care was taken to 

insure that the observed α deviation peak was not an artifact of the simulation, future studies 

should attempt to duplicate the results using real sources and an appropriate tissue model to 

further confirm that the observed peak is real.  

 

7.4 Chapter Summary 

 In this chapter, the impact of initial frequency, frequency, initial kaeff value, and ∆kaeff, on 

the accuracy and precision of the Spectral Fit algorithm was investigated.  The accuracy and 

precision of the attenuation estimate were consistently improved by increasing the frequency 
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range while the accuracy and precision of the scatterer size estimate were consistently improved 

by increasing ∆kaeff.  The improvement observed explained the dependence of precision on half-

space attenuation and electronic noise that was observed in Chapter 5.  Also, the dependence of 

the traditional estimation algorithm was investigated and shown to exhibit a similar dependence 

on ∆kaeff, and the use of initial kaeff values greater than 0.5 for the traditional algorithm was 

validated.  In addition, the Spectral Fit algorithm was shown to exhibit a peak in the deviation of 

the attenuation estimate versus initial frequency that was shown to be correlated with the 

frequency location of the peak in the backscattered spectrum.  The occurrence of the deviation 

peak may be useful in the future to improve the precision if it is not an artifact of the simulation. 
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