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CHAPTER 3

THEORETICAL ANALYSIS OF NONLINEAR
ABSORPTION

In the last chapter, we went through a detailed description of asymmetric pulse

distortion.  However, this is only one of the nonlinear mechanisms that corrupt voltage-

based linear extrapolation.  Nonlinear absorption is another process associated with

nonlinear propagation that leads to a change in the amplitude of the propagating wave.

Typically, nonlinear absorption is discussed in terms of the acoustical saturation process

for plane waves [Beyer, 1974; Hamilton and Blackstock, 1998; Pierce, 1991].  In this

chapter, we shall begin with a discussion of the saturation process and then apply the

same physical principles to the fields of a focused sound source.

3.1 Acoustical Saturation for Plane Waves

The propagation of a finite amplitude plane wave, to first order, is governed by

the Burgers equation [Hamilton and Blackstock, 1998].
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In this equation, ρ is the density, c is the sound speed, δ is the sound diffusivity (i.e.

viscosity term), and β is the traditional coefficient of nonlinearity (i.e., 
A

B
2

1 + ) for the

fluid in which the wave propagates.  Also, p is the pressure, x is the distance the wave has

propagated in the medium, and τ is the coordinate for the retarded time frame (i.e.,

c/xt −=τ ).  If we assume the medium is lossless, the viscosity term drops out, and we

are left with
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Equation (3.2) can then be solved by the method of characteristics to yield [McOwen,

1996; Hamilton and Blackstock, 1998]
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where f(t) is the time waveform of the acoustical signal at the source (i.e., x = 0).

Equation (3.3) is valid until it predicts a multivalued function (i.e., a shock forms in the

propagating waveform) [McOwen, 1996].  For the purpose of our analysis, we shall

assume that the source is producing a sinusoidal waveform with an initial amplitude of

po.  Therefore, Equation (3.3) can be rewritten as
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Notice that in Equation (3.4) for any set distance x, the positive portions of the

wave will occur sooner in τ, and the negative portions of the wave will occur later in τ.

In effect, the higher-pressure values will travel faster than the lower pressure values

[Hamilton and Blackstock, 1998].  As a result, at some propagation distance, the

compressional pressure will overtake the rarefractional pressure and a shock will form

[Hamilton and Blackstock, 1998].  The distance at which this occurs is known as the

shock formation distance and is given by [Hamilton and Blackstock, 1998]
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Often when studying nonlinear propagation for a plane wave, all the distances are

normalized with respect to this distance [Hamilton and Blackstock, 1998].  Rewriting

Equation (3.4) based on this normalization yields
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where 
x
x=σ .  The shock formation for plane wave propagation is illustrated in Figure

3.1 for successive values of σ.
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Figure 3.1: Plots illustrating shock formation for a propagating plane wave.

Notice that in these plots, the wave is almost a pure sinusoid for low σ values.

However, as σ increases, the wave is more distorted, and by a σ value of 0.985 the

compressional portion of the wave has almost overtaken the rarefractional portion of the

wave forming a shock.  The curves shown in Figure 3.1 were generated using Fubini’s

solution as discussed in [Hamilton and Blackstock, 1998].

Once a shock is formed in the propagating wave, Equation (3.4) is no longer valid

because it would predict a multivalued waveform, which is not physical.  Therefore, in

order to keep the solution physical, a finite amount of frequency dependent loss, known
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as nonlinear absorption, is included at the shock front [Hamilton and Blackstock, 1998].

As the wave propagates, energy gets transferred out of the principle frequency and into

the higher harmonics.  As more energy enters the harmonics, the wavefront steepens as

shown in Figure 3.1.  However, the frequency-dependent loss absorbs the higher

frequencies at the shock so that the wave cannot fold over on itself [Hamilton and

Blackstock, 1998].  As a result, the loss keeps the solution physical.  Fortunately, there is

always this type of frequency-dependent loss in real fluids.

Acoustical saturation is directly tied to the nonlinear absorption, as can be seen by

restricting our attention to some point in space, xo.  The amplitude of the pressure field

passing through this point will increase linearly as the source pressure is increased

provided that a shock has not formed prior to xo.  If a shock has formed, then energy will

have been transferred into the higher harmonics which are just absorbed by the nonlinear

absorption at the shock.  Increases in the source pressure contribute to increases in

absorption by the shock, as well as to increases in the wave amplitude at xo.  Therefore,

the pressure at xo will be less than would be expected based on linear extrapolation.  In

fact if σ at xo is large enough, the pressure at xo will be independent of the initial pressure

at the source.  This is known as acoustic saturation [Hamilton and Blackstock, 1998].

3.2 Nonlinear Absorption for a Focused Sound Source

Now that the basic ideas behind nonlinear absorption have been presented, we can

extend these ideas to converging sound beams.  The study of saturation for focused

sources has been pursued by many people including [Sempsrott, 2000; Duck, 1999;

Bacon, 1984].  However, in our analysis, we shall back away from saturation, and

consider qualitatively how nonlinear absorption could be applied to some of our results

from Chapter 2.

Recall that in Chapter 2 we found the following expressions for the peak

compressional and rarefractional pressures at the focus of a transducer.
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Notice that in these expressions, as we approach shock formation (i.e., 1→sσ ), the

compressional pressure should go to infinity, which is not a physical solution.  However,

in order for the peak of pc to become sharper, energy must be transferred out of the

fundamental and into higher harmonics.  These higher harmonics should then be

absorbed due to nonlinear absorption by the same physical arguments that govern

acoustical saturation.  Therefore, nonlinear absorption will serve to keep the solution

physical for the focused source as well.


