APPENDIX A:
POISSON’'S THEOREM

This appendix contains a brief discussion of Poisson’s theorem. The theorem is
stated and then proved. The statement and proof of the theorem are adapted from Pierce
[1991]. This theorem can be easily applied to finding the pressure field at the focus of a

spherically converging wave.

Statement of Theorem

Let p(X,t) satisfy the wave equation for someregion X1 AZ.
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Also, let X, be any point in this region. Define a sphere of radius R centered at the point
X, where R is chosen such that the medium is homogeneous inside of the sphere from
some time t,- R/c to time t,. Also, define p(X,,R,t) be the sphericall mean of

p(X, + nR,t) over the spherical surface given by,

p(% Rt)= ap(%, +AiRt)dS (A.2)
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where 1 isthe surface’ s outward unit normal. Then p(X,.t,) isgiven by,

p(%, 1) = o+ 2 1 O20n(x, R A3)
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Proof of Theorem:
The theorem shall be proved by operating in spherical coordinates and sdlecting

X, to be the origin (0,0,0). Begin by calculating the spherical mean for the full wave

equation,
e 1 N sge 1108 g ydg df 2= 0 (A.4)
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In this equation, the R® terms cancd. Furthermore, the N? operator in spherical
coordinatesis given by

- 1 92 1 T o, 1 1
N2p= oo ma RO+ o &in
P RIR? P RZsin(q) 1q & "a Ta o stnz(q)ﬂfzp

Substituting this expression into the above equation and simplifying where possible

(A.5)

yields,
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Now if we evaluate integrals |11 and |11 we get,
1 qu P 1 ﬂpO 1
= da%n(q) >df = a%m(q)— =0 (A.7)
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because sn(p) =€n(0) =0, and
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because?ﬁg =g : . Thismeans that
e
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Now define a function F(R,t) by

F(Rt) = Rp+ 11 Ry (A.10)
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and take the derivative of this function with respect to R and t:
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Now multiply hl by - 1 and add the result to E.
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This means that F(Rt) has a general solution of the foom F(R;t) = f8?+59. The
e Cg

function f(*) can be found in terms of p(X,t) solving for F(R=0,t) as afunction of t.

F(R=0,t)= f(t)= _Rp+__Rp_

11 g ;ﬂt Breo (A.13)
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L p+=—p==p(00,t)=p(0,t

Rg R Cﬂ pg p(00,t) = p(0,t)

This means that
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FRD =Pt 2P (FRO). 5. = p0L,)
© O 1q e (A.14)
= oS 0
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bu)=Erm o -
Since the theorem is true for 0, it is true for any value of X, since a simple coordinate

transformation could always be used to place any X, at theorigin.
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