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ABSTRACT 

The problem of structure detection in images involves the identification of local groups of 

pixels that are both homogeneous and dissimilar to all nearby areas. Homogeneity can be 

measured with respect to any criteria of interest, such as color, texture, motion, or depth. No 

prior knowledge is assumed regarding the number of structures, their size or shape, or the degree 

of homogeneity that they must possess. Only the homogeneity criteria of interest have to be 

known. Structures may be either connected (pixels form contiguous areas) or disconnected, 

but the former case is treated in detail by this thesis. Structure identification is inherently a 

multiscale problem. For example, a texture contains subtexture, which itself contains subtexture, 

etc. In the absence of prior information, an algorithm must identify all such structures present, 

regardless of the scale. A formulation of scale is given that is able to describe image structures 

at different scales. A nonlinear transform is presented that has the property that it makes 

structure information at a given scale explicit in the transformed domain. This property allows the 

processes of automatic scale selection and structure identification to be integrated and performed 

simultaneously. Structures that are stable (locally invariant) to changes in scale are identified 

as being perceptually relevant. The transform can be viewed as collecting spatially distributed 

evidence for edges and regions and making it available at contour locations, thereby facilitating 

integrated detection of edges and regions without restrictive models of geometry or homogeneity 

variation. An application of this structure identification to the problem of estimating 2-D motion 

fields from video sequences is given. This approach has advantages in being able to compute 

accurate motion near occlusion boundaries and in areas with little variation in intensity. 
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1. INTRODUCTION 

The problem of structure detection involves the identification of local areas within some set 

of data that are both homogeneous and dissimilar to all nearby areas. Homogeneity can be 

measured with respect to any criteria of interest. In the fields of image processing and computer 

vision, some such criteria include color, texture, motion, and depth. This problem is approached 

from the perspective of a total lack of prior information. No knowledge is assumed regarding 

the number of structures, their size or shape, or the degree of homogeneity that they must 

possess. Only the homogeneity criteria of interest have to be known. Further, the structure 

detection problem is treated from a low-level perspective in this thesis. No high-level reasoning 

is employed, and no human supervision of the process is allowed. 

Because of the lack of a priori information, issues related to scale become significant. It is 

well-known that the real world contains structure at multiple scales. Consider, for example, 

structures defined by similarity of texture. A forest is a texture composed of trees. However, 

each tree is also a texture defined by leaves, and each leaf a texture defined by veins. None 

of these textures is more relevant than any other; they just exist at different scales. Thus, 

structure forms a natural pyramidal hierarchy in which a structure contains substructures, which 

themselves contain substructures, etc. If a particular image contains structures at multiple scales 

(such as if a forest, individual trees, and individual leaves are all visible), then the best a structure 

detection algorithm can hope to do is to identify all of the structures in the image, regardless 

of the scale at which they are present. 

A general framework is introduced by this thesis within which this kind of problem can be 

solved. It is then shown in detail how to apply this framework to solve the specific structure 

detection problem known as image segmentation. This problem involves the identification of 
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homogeneous areas that are connected (defined by contiguous pixels), and for which homogeneity 

is defined in terms of variation on the actual values of the data, and not some derived attribute 

such as texture. A method is then described that uses the structures identified by the image 

segmentation process to derive 2-D motion fields from a video sequence. 

1.1. Motivation and Approach 

Identifying structures at different scales requires a formal description of scale and its relation

ship to structure. This thesis argues that there are three distinct types of scale that are necessary 

to capture image structure. The first, integration scale, describes the amount of spatial support 

necessary at a given pixel in order to extract the homogeneity criteria of interest (e.g., texture). 

The second, homogeneity scale, expresses the amount of homogeneity present within a structure, 

and the last, spatial scale, determines the degree of proximity among the elements of a structure. 

Together, these scales fully characterize a structure. 

For any given structure to be identifiable by a structure detection algorithm, it is necessary 

that the algorithm be tuned to the scale at which the structure exists. In other words, structure 

identification requires that the scale of the structure be known. Unfortunately, the scale of 

a structure cannot be computed unless the structure is itself known. Thus, the processes of 

scale selection and structure detection must be integrated and performed simultaneously. This 

is accomplished by a transform that utilizes this formulation of scale. The transform can be 

thought of as a form of force-based clustering that groups together similar pixels. It does this 

in a manner that makes explicit the structures present within an image at a given scale. One 

might imagine that there are many scales at which a particular grouping of pixels is reasonable 

but not perceptually relevant. It is argued that the importance of a structure is directly related 

to its extent in scale. Because the transform makes the structure at a particular scale explicitly 
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available, it is easy to examine the change in structure resulting from a change in scale. Those 

structures that are stable (invariant) to local changes in scale then can be identified as meaningful. 

In this way, scale selection and structure identification are integrated together. 

A framework is presented for using the transform in this manner in order to solve the structure 

detection problem. However, a full solution to the general case is not given. Instead, the 

thesis focuses on applying the framework to the problem of image segmentation. The structure 

connectedness requirement of this problem results in structures forming regions that are separated 

by closed edge contours. For this case, the transform can be viewed equally as either a region 

detector or an edge detector. This has some interesting ramifications because previous image 

segmentation algorithms are either solely region-based or edge-based. In addition, because the 

process of edge detection is typically formulated in terms of the local maximum of the gradient, 

some comparisons are made between the transform and the notion of a multiscale gradient 

operator. 

Finally, the problem of estimating the 2-D motion field from a video sequence is addressed. 

An algorithm is presented that utilizes the region structures produced by the image segmentation 

algorithm to produce 2-D motion fields, identify areas that exit (become occluded) and enter 

(become disoccluded) the field of view, identify areas having similar motion, and determine 

the relative distance from the camera of these motion regions. A region-based approach has 

advantages over other motion estimation methods in terms of its ability to produce accurate 

motion estimates in the presence of noise and changes in illumination, and within areas having 

little intensity variation. In addition, the close relationship between occluding contours and region 

structure boundaries defined by intensity simplifies the problem of producing accurate motion 

estimates near the occluding contours. The algorithm considers a video sequence two frames 
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at a time. Each image is segmented, and the identified regions in the two frames are matched 

at multiple scales. The motion of the pixels within a pair of matched regions is modelled by 

an affine transformation, which is computed independently for each matched pair at all scales. 

Because a pixel may belong to several different regions, it may have multiple motion vectors 

associated with it. An integration module then attempts to select the most correct motion vector 

at each pixel in order to yield a single motion field. Motion segmentation and occlusion and 

layer identification algorithms are then applied to this motion field. 

1.2. Previous Work 

No general framework for approaching the problem of structure detection has been given 

previously. In terms of image segmentation, many algorithms exist for computing an image 

segmentation at a single scale. These include thresholding techniques [1, 2], region growing 

[2-4], split-and-merge [5], watersheds [6], rule-based systems [7], and MRF-based models [8]. 

Such methods are generally able to identify structure that exists at scales to which they are tuned, 

however, they cannot identify structures at other scales. In addition, in areas where no structure 

exists at the tuned scale, unintuitive regions will be identified. Prior attempts at multiscale image 

segmentation [9-11], represent an image at different scales and apply one of the single scale 

segmentation algorithms to the representation of the image at each scale. This type of scale is 

shown to be an integration scale, and, as such, is only weakly related to structure because the 

homogeneity and spatial aspects of scale are not modelled. 

Previous approaches to the problem of 2-D motion estimation can be classified as either pixel-

based (intensity-based) or feature-based. The pixel-based approaches include algorithms that 

utilize constraints based upon local spatial and temporal derivatives [12, 13], as well as the 

popular block-based correlation algorithm (BCA). These algorithms generally perform well in 
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textured areas of the scene; however, they suffer from the problematic assumptions that intensity 

changes are caused solely by motion and that motion causes variations in intensity. As a result, 

noise and lighting changes induce motion, and motion estimates are difficult to obtain in areas 

having little variation of intensity. In addition, motion discontinuities at occlusion boundaries also 

may cause problems. The feature-based methods extract features from images and then match 

them across frames, thereby obtaining a displacement field. Such features include points defined 

by local intensity extrema [14], edges [15-17], corners [17, 18], and regions [19-24]. These 

algorithms generally provide accurate but sparse motion fields. Because each pixel in an image 

belongs to at least one region, the use of region features can provide dense motion estimates. The 

previous region-based algorithms follow the same general approach as the algorithm described in 

this thesis, but are all monoscale, use simple methods to match regions, and are error prone near 

occlusion boundaries. The region matching algorithm used in this thesis is similar to the region 

adjacency graph matching method of [25], but has some advantages with regard to reduced 

computational complexity, coarse-to-fine matching, and ability to properly match regions lying 

entirely inside another region. 

1.3. Thesis Organization 

The relationship between structure and scale is discussed in detail in Chapter 2. This includes a 

discussion of the three distinct kinds of scale, as well as the number of scale parameters required 

to fully characterize structures of arbitrary size, shape, and degree of homogeneity. The transform 

is introduced in Chapter 3. Its ability to make both connected and disconnected structures explicit 

is explained, and some pointers are given toward using it to solve the general structure detection 

problem. Chapter 4 considers the problem of image segmentation. A method for automatically 

selecting scale parameters and detecting region structures is given. A comparison is also made 
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between the transform and the concept of a gradient. Chapter 5 motivates and describes the use 

of region structures in estimating and segmenting 2-D motion fields. Finally, some conclusions 

are made in Chapter 6. 
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2. STRUCTURE AND SCALE 

This thesis is concerned with the problem of automatically identifying low-level structures 

present in data. Image and video data are used exclusively in this thesis, but the approach is 

truly general and can be applied to any type of dataset. A structure consists of a local group 

of datapoints (pixels) within a dataset that are relatively homogeneous with respect to some 

homogeneity criteria and that are dissimilar to other nearby points outside of the structure. No 

prior information concerning the size, shape, number, or degree of homogeneity of the structures 

is assumed. Homogeneity can be measured in terms of the variation of the values taken by the 

pixels within a structure, or by using some attribute of the data. In the latter case, a feature 

vector that characterizes the homogeneity criteria of interest has to be computed at each pixel . 

Structure homogeneity is then measured in terms of the amount of variation in the values of these 

feature vectors. Consider, for example, a color image. Because color information is available 

directly, one could identify structures having similar color by using the distance between colors 

in some color space (e.g., CIE L*a*b* [26]) as a similarity measure. However, one may be 

interested in identifying textural structures. Textures are comprised of texture elements (texels) 

that have similar properties. Texels cannot be sensed directly, and the properties by which they 

are similar are unknown a priori. In this case, a similarity measure is not directly available 

and has to be estimated. An example of low-level structure in a video sequence is moving 

objects, which are defined by areas of similar motion, a criterion that, once again, is not directly 

available and must be estimated. 

Humans are quite adept at discriminating colors, textures, and moving objects given these 

constraints, but one might wonder whether the problem of detecting such structures is truly low-

level, or whether higher-level processes such as reasoning have to be involved. Psychophysical 
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experiments on humans, such as those performed by Julesz [27], indicate that a wide variety of 

textures are discriminated preattentively, that is, using only low-level processing in the visual 

cortex, and not any cognitive reasoning. Thus, the problem does seem to be well-defined at 

the low level. 

2.1. The Relationship Between Structure, Scale, and Resolution 

Before one can address the issue of developing an algorithm capable of automatically perform

ing structure identification, it is first necessary to understand the complex relationship between 

structure and scale. Structure is inherently recursive, i.e., a structure contains substructure, which 

itself contains substructure, etc. Which of these structures is "relevant" in some sense is deter

mined by the scale at which one is looking. Scale is not the same thing as resolution, however, 

even though the terms sometimes are used interchangeably. Resolution describes the distance 

from which data are viewed, thereby determining which structures are visible in the data. For 

example, at a particular resolution, one may be able to see a forest of trees. Viewed closer, 

individual trees become visible, and, closer still, individual leaves. At any given resolution, only 

a finite number of structures are visible because the number of levels of embedded structure is 

limited (typically 2-4). For example, if the forest is viewed at a resolution where it encompasses 

the entirety of one's field of view, then the forest is the coarsest scale structure visible (call this 

scale the outer scale). Individual trees are also visible, and these can be considered structures at 

some finer scale. One may imagine that individual leaves are visible on some trees, representing 

structure at an even finer scale. It is not likely, however, that any substructure within a leaf 

would be discernible, and, hence, the scale of the leaf represents the inner scale. As a result, for 

the given resolution, there are three levels of structure visible in this example. It is clear that 

resolution is extrinsic to the data in that it affects which structures are visible (can be resolved), 
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but has no relationship to the structures themselves. Scale, on the other hand, actually defines 

and characterizes the structures, and, hence, is an intrinsic property of the data. 

2.2. Comparison with the Fractal Model of Structure 

Self-similar fractals are sometimes touted as being good models of real-world structure. Fractal 

models were popularized by Mandelbrot [28] fairly recently, but have a long history dating back 

at least as far as Cantor [29] and Fatou [30]. Such models are recursive in that a structure 

at some scale is composed of finer scale structures that are similar to it. Many examples are 

given in [28] of visually realistic depictions of objects such as ferns, trees, and mountains using 

these models. Real-world structure, however, is not well-represented by fractal models. For 

example, a brick wall is a texture composed of individual brick texels. At a finer scale, each 

brick is a texture, formed not by smaller bricks, but instead by rock and clay grains. In general, 

the statistics of a texture are unrelated across scales. Self-similar fractals represent a special 

instance of multiscale structure in which the homogeneity characteristics are unchanged across 

scales. They produce realistic looking objects because they capture the multiscale aspect of 

structure. This makes them quite useful for applications in computer graphics involving the 

synthesis of natural scenes, but not especially useful for applications involving image analysis, 

such as texture segmentation or image compression. 

2.3. On Scale 

Recall that a structure consists of a local area that is homogeneous with respect to some 

similarity measure. The degree of similarity and proximity that must be present among a set 

of pixels in order for it to be considered a structure has to be specified. In addition, if feature 

vectors have to be computed, then the extent of the surrounding area used at each pixel in this 

computation also has to be specified. This information is provided by three distinct kinds of 
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Figure 2.1. Synthetic graylevel image. At a scale allowing for little homogeneity variation, the 
image consists of triangular structures. However, at a coarser homogeneity scale, the image 
consists of square structures. 

scale: homogeneity scale, spatial scale, and integration scale, respectively. Each structure within 

the data is characterized by some combination of these scales. Scale parameters are assumed to 

take values in the range [0, oo] on the real line. A larger value (coarser scale) indicates more 

variation in the structure characteristic described by the scale parameter, and a smaller value 

(finer scale) indicates correspondingly less variation. 

Some examples may be useful to clarify these concepts. Consider Fig. 2.1, a synthetic image 

where each pixel takes on one of four different values. At a fine homogeneity scale (i.e., 

relatively little variation allowed within the structures), the pixels group into triangular structures. 

Similarly, at a coarser homogeneity scale, structures have more variation and the squares become 

relevant. The interaction between both homogeneity and spatial scale is demonstrated in Fig. 2.2, 

which contains discrete 2-D data of l-D, integer-valued feature vectors. Each data point is shown 

labelled by its integer value. The group of feature vectors comprising each structure is circled 
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(a) (b) 

(c) (d) 

Figure 2.2. A 2-D set of discrete, integer-valued data, (a) Some structures with a strong degree 
of homogeneity and spatial locality, (b) Some structures with less homogeneity than in (a), 
but the same degree of spatial locality, (c) Some structures with less spatial locality than in 
(b), but the same degree of homogeneity, (d) A structure with less homogeneity and spatial 
locality than in (c). 
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Figure 2.3. Example demonstrating integration scale. The sunflower field is imaged nonfrontally, 
resulting in the nearer sunflower texels appearing much larger in the image plane than the farther 
sunflowers. The spatial support of an operator that computes feature vectors capturing the texel 
characteristics should have spatial support similar to the texel size. Hence, the texture field is 
characterized by a coarser integration scale at the bottom of the image than at the top. 

in Fig. 2.2(a)-(d). At some fine homogeneity and spatial scale, the structures shown in (a) are 

present, and if the homogeneity scale is made more coarse, the structures in (b) become present. 

If the spatial scale is then made more coarse, the larger structures in (c) become relevant, and 

if both scales are then made coarser still, the structure in (d) becomes relevant. None of the 

structures present in (a-d) is any more valid or important than any other; they merely exist 

at different scales. An example of integration scale is given in Fig. 2.3. This figure is an 

image of a sunflower field comprised of individual sunflower texels. The field has been imaged 

nonfrontally, so that the texels are at varying distances relative to the camera, causing the nearer 
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Figure 2.4. Image of a sailboat on a lake. The image contains considerable multiscale structure 
defined by areas of homogeneous intensity. For example, at a scale where regions have significant 
intensity variation, the cloud mass and water each can be considered as single regions. However, 
at a finer scale with increased sensitivity to intensity variation, individual clouds and the streaks 
within the water should be identified as regions. 

texels to be much larger than the farther ones. The spatial support of an operator that computes 

feature vectors capturing the texel characteristics should have spatial support similar to the texel 

size. Hence, the texture field is characterized by a coarser integration scale at the bottom of 

the image than at the top. 

Figures 2.4-2.5 give more examples of multiscale structure present in real images. Figure 2.4 

is a grayscale image of a sailboat on a lake. Let homogeneity be measured in terms of graylevel 

differences for this image. Both the cloud mass and the water are relevant structures at some 

scale, and the individual clouds within the mass and the streaks within the water correspond 
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Figure 2.5. Image of a television news announcer. The woman's hair and sportcoat each form 
textures at some scale. The primary orientation of her individual hairs is different on either 
side of her part; thus, the part divides the hair into two different subtextures at a finer scale. 
Similarly, the orientation of the texture on the sportcoat is horizontal over the main body of the 
coat, but vertical on the arms. Thus, the coat subdivides into three different textures (main body 
plus each sleeve) at a finer scale. 

to relevant structure at some finer scale. Figure 2.5 is also a grayscale image, but now let 

homogeneity be measured in terms of textural characteristics. The woman's hair and sportcoat 

are both textures at some scale. The primary orientation of her individual hairs is different on 

either side of her part; thus, the part divides the hair into two different subtextures. Similarly, 

the orientation of the texture on the sportcoat is horizontal over the main body of the coat, but 

vertical on the arms. Thus, the coat subdivides into three different textures (main body plus 

each sleeve) at a finer scale. 

14 



Although three kinds of scale are sufficient to describe low-level structure, many more than 

three scale parameters are required. An image cannot be described with a single homogeneity 

scale because it may contain very homogeneous structures in one part of the image and much 

less homogeneous structures in another part. Hence, at least one homogeneity scale parameter 

is required for each structure. Further, the lack of any constraints on structure size or shape 

requires the use of a potentially different spatial scale at each pixel within the structure. For 

instance, an octopus-shaped structure requires coarse spatial scales to represent the main body and 

much finer spatial scales to represent long, narrow tentacles. In addition, a potentially different 

integration scale parameter also may be required at each pixel within a structure. Consider the 

sunflower field texture in Fig. 2.3. An integration scale parameter large enough to capture the 

characteristics of one of the closer texels also would capture characteristics of an amalgam of the 

farther texels, thereby giving unintuitive results. Similarly, a finer integration scale tuned to the 

farther texels would compute the characteristics of the subtexture present on the closer texels. 

Thus, in general, to describe any structure, it is necessary to utilize three scale parameters (one 

of each kind of scale) for each pixel. 

For a given dataset, each perceptually relevant structure has a scale at which the grouping makes 

sense. However, many other pixel groupings will exist in the data which also are reasonable at 

some scale, but which are not perceived as being valid. It is assumed that perceptually relevant 

structures are distinguished from these nonrelevant groupings by being stable with scale (i.e., 

they make sense over some continuous range of scale). The motivation for this assumption is 

the following: The degree to which a structure is relevant is directly proportional to the ratio 

between the homogeneity difference between a structure and adjacent structures (interstructure 

homogeneity) and the infrastructure homogeneity variation. This same relationship holds for 
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Figure 2.6. A l-D continuous signal and its representation at different integration scales 
computed by convolving the signal with a Gaussian kernel (isotropic diffusion). 

spatial and integration scales as well. These ratios are reflected in the extent of a structure in 

scale, where higher ratios correspond to greater extent in scale. 

2.4. Comparison with Other Formulations of Scale 

In the literature, the term scale generally refers to a one-parameter index into a hierarchical 

decomposition of a signal. Some examples of such decompositions include isotropic diffusion 

[9, 31], anisotropic diffusion [32], wavelets [33], and morphology [34]. The original signal is 

represented with decreasing amounts of detail as the scale becomes coarser. The scale parameter 

may be continuous [31], or take a discrete set of values [33]. The continuous case is generally 

referred to as a scale-space. An example of a scale-space decomposition obtained using isotropic 

diffusion is given in Fig. 2.6. 
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The type of scale used by all of these methods is actually an integration scale. The scale 

parameter defines the size of a spatial neighborhood over which a filter is applied. These filters 

are inherently low-pass, thereby emphasizing the signal mean over the given neighborhood. 

The decompositions obtained with this class of methods are not structural. There is no simple 

relationship between the information removed by these filters and the structure present within 

the signal. In this thesis, such methods are referred to as representing a signal at different scales, 

and should not be confused with the general formulation of scale given in this chapter that is 

directly related to structure. 
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3. A TRANSFORM FOR STRUCTURE DETECTION 

This chapter addresses the issue of how to utilize the ideas presented in the previous chapter 

on the relationship between scale and structure, to perform structure detection. Because structure 

is inherently characterized by scale, structure detection cannot be performed unless the scale is 

known. Similarly, the scale of a structure cannot be computed unless the structure already has 

been identified. Because neither the structures nor their scale is known a priori, scale selection 

and structure detection must be integrated. This problem is solved through the use of a new 

transform [35], which makes the structure present at a given scale explicit in the transformed 

domain. This allows easy examination of the change in structure resulting from a change in 

scale. A search across all scales for the set of structures that are invariant to local changes in 

scale results in the simultaneous identification of the perceptually relevant structures and the 

scale at which they exist. 

3.1. The Transform 

For a given scale, the transform maps a set of data into an attraction force field, within which 

the structure at that scale is explicitly encoded. Let I(x) represent a continuous ^-dimensional 

dataset of /-dimensional vectors, i.e., 

h 

x = 

2% 

, / = 

W/ w 

(3.1) 
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For a given triplet of scale parameters (ag,as,ai) at each point, denoting, respectively, the 

homogeneity, spatial, and integration scale at that point, a force field, F, is computed as follows: 

F ( x ; ag{x),crs{x),ai{x)) = /.. . ./ Fyx-^--dy1...dyk 

R 
F,JX = dg(AI,ag(x)) • rf,(fj,X)or.,(f)) 

A/ = \\m-i(in\ 

/(f) = t(/(z),^(z)) 

R = domain(l) \ {x} 

Tyx =y~X 

(3.2) 

In the case that I(x) is discrete, Eq. (3.2) becomes 

F (x ; ag(x), as(x), *,-(*)) =T Fyx ^ (3.3) 
p IvyxW R 

The transform computes at each pixel a vector sum of pairwise affinities between the pixel and 

all other pixels. The resultant vector produced by the transform at each pixel defines both the 

direction and magnitude of attraction experienced by the pixel from the rest of the image. The 

affinity of a pixel xQ for another pixel y0 is given by the term irj,OIO(ri,aXo/||fj,aXo||), where rw ,0 

is the vector from XQ to j/b. a°d -̂ o^o is the magnitude of the attraction for pixel j/b experienced 

by pixel XQ. This magnitude is given by the product of a homogeneity distance function, dg(-), 

which measures the degree to which the two pixels are similar, and a spatial distance function, 

ds(-), which measures the proximity of the pixels. The homogeneity between two pixels, A / , 
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is given by the Euclidean distance between their associated, m-dimensional feature vectors, 

r= (3.4) 

\ImJ 

where the feature vector at each pixel is determined by an operator, k(-), which computes 

the desired homogeneity characteristics over an area surrounding the pixel with spatial support 

given by 07. 

3.2. Properties of the Homogeneity and Spatial Distance Functions 

With the definition of the force field F given in Section 3.1, pixels are grouped together into 

structures consisting of sets of pixels that are mutually attracted to one another. The force 

direction at each pixel points towards the interior of the structure to which it groups. Pixels may 

group together into any possible spatial configuration, allowing structures of any conceivable 

size or shape to be detected. As the scale parameters are varied, the force vectors align to form 

different structures. If the values of the homogeneity scales are increased, less homogeneous 

structures should be encoded in the field. Similarly, an increase in the spatial scales should cause 

larger structures to be encoded. To ensure such relationships between scale and structure, the 

distance functions, ds(-) and dg(-), should possess the following properties: 

/. Unit Range. The transform measures the degree of attraction among pixels, not repulsions, 

so the functions should be nonnegative. For convenience, and without loss of any generality, 

the maximum value of these functions is set to unity. Hence, 0 < dg(-),d„(-) < 1. 

20 



2. Decreasing Attraction (image characteristic). The degree of attraction between pixels should 

be directly proportional to their similarity, dg(AIi,ag) > dg(Al2, ag) for All < A/2, Vov,, 

and proximity, ds(fi,ax) > ds(r2,(Ts) for | |n | | < ||r2||,Vo-s.. 

3. Increasing Attraction (scale characteristic). Pixel similarity should be directly proportional 

to both homogeneity scale, dg(AI,o-^) < dg(AI,o~) for al
g < a*, and spatial scale, 

<f,(f,cri) < d » ( r , ^ ) for ^ < cr̂ . 

4. Isotropicity. Structure should not be detected by the transform preferentially in any direction. 

Thus, d8(f,aH) = /(||f||,o-.,) is required. 

5. Locality. The field at each pixel should depend only on a local (albeit adaptively determined) 

neighborhood around that pixel. Hence, let ds(f, as) = 0 for ||f|| > c-as, for some constant, 

c. 

Two possible forms for the functions dg(-) and d,(-) satisfying these criteria are unnormalized 

Gaussian 

dg(AI,ag) ~ ^ 2 * 0 * ^ ( 0 , 0 * ) (3.5) 

Mr^Jf^^^^lf (3.6, 
0 , [|r|| > 2as 

and box-car window 

dg(&I,<rg)~BM{<ig) (3.7) 

ds(r,as)~BM{o-s) (3.8) 

where 

«.«>-<„" J; is* <« 
Although F is not invariant to the exact form of dg(-) and ds(-), one would expect different 

forms to result in minimal change in the encoded structure information, so long as the forms 
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satisfy the listed criteria, because relevant structure is locally invariant to changes in scale. This 

point is discussed in more detail in the context of the problem of image segmentation in the 

following chapter. 

3.3. Structure in the Field Domain 

If a structure is connected, then at a scale at which the structure exists, the structure is 

represented within the field as a region of contracting flow (inward force vectors) defined by 

contiguous pixels. Such a region is termed a region of attraction. Within this region, the flow 

sinks form a set of contours that characterize the skeleton of the structure. Similarly, if spatially 

adjacent structures are also connected, the region boundary is represented by the source of the 

flow. Consider a region whose boundary is given by a closed curve V, where VV is the outward 

normal of V. Denote by F~ the field immediately on the interior of V and by F + the field on 

the immediate exterior. From the property of contracting flow, V satisfies the two relations 

W - F - < 0 , W - F + > 0 (3.10) 

because every point on a boundary curve separates at least two areas of contracting flow. 

Figure 3.1(a) shows F~ and F + vectors for a 2-D scalar image containing a black region on a 

white background, with the scale parameters selected to yield regions of attraction. Other values 

of (ag, as) scales may result in contracting flow over a set of disconnected regions (Fig. 3.1(b)). 

The term zone of attraction is used to denote the image space characterized by contracting flow, 

regardless of whether or not it consists of one or more regions. Representing both connected and 

disconnected structures within the field as areas of contracting flow is essential, because real-

world structure may not always be connected. An example of both connected and disconnected 
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(a) (b) 

Figure 3.1. (a) Spatial and homogeneity scales selected so that the black region is transformed 
into a zone of attraction consisting of a single region of contracting flow, (b) Coarser spatial 
scales are used, resulting in a zone of attraction containing several regions of contracting flow. 

structures in a real image is given in Fig. 3.2. Individual birds comprise connected structures of 

homogeneous graylevel, and the water forms a connected texture. The flock of birds, however, is 

a disconnected texture formed by individual bird texels. In addition, if one had a video sequence 

of this scene, the flock also would form a disconnected region defined by similarity of motion. 

Structure identification in the field domain involves identifying zones of attraction that are 

stable with respect to local changes in scale. A general method for identifying zones of attraction 

is not presented in this thesis. Instead, we consider only the case where all structures are 

contiguous, i.e., all zones of attraction are also regions of attraction. A complete solution for 

this case is given in the following chapter. 
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