INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell informaticn and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A TWO-DIMENSIONAL AMPLITUDE-STEERED ARRAY FOR REAL-TIME
VOLUMETRIC ACOUSTIC IMAGING

BY
CATHERINE ANN HILLSLEY FRAZIER

B.S.E.E., University of Maryland at College Park, 1994
M.S., University of lllinois at Urbana-Champaign, 1996

THESIS
Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2000

Urbana, Illinois

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9971076

8

UMI

UMI Microform9971076
Copyright 2000 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learmning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

APRIL 2000
(date)

WE HEREBY RECOMMEND THAT THE THESIS BY

CATHERINE ANN HILLSLEY FRAZIER

ENTITLED A TWO-DIMENSIONAL AMPLITUDE-STEERED ARRAY

FOR REAL-TIME VOLUMETRIC ACOUSTIC IMAGING

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

DOCTOR OF PHILOSOPHY

. Director of Thesis Research
,:} ) -~
~ Head of Dep. nt

Com% %aﬁon‘f

Bowrd C. WW// |
Lovenaon

THE DEGREE OF.

equired for doctor’s degree but not for master’s.

0O-517

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

Real-time volumetric ultrasound imaging is difficult due to problems with array
construction and due to the slow speed of data collection. In 1976, a linear amplitude-
steered array was introduced that uses reduced electronics to steer a monofrequency
beam. The current study examines how the linear amplitude-steered array can be
extended to a two-dimensional array operating over a broad range of frequencies to
be used for a real-time volumetric imaging system. First, the properties of the linear
amplitude-steered array are studied, showing that there is a tradeoff between axial
and lateral resolution, unique to this array, that depends on the length of the array.
Second, various time-frequency distributions are surveyed for use in creating an image
from a single received signal. Next, the concept; of imaging with a linear array are
extended to imaging a volume with a two-dimensional amplitude-steered array. The
array design is presented, and it is shown that targets can be localized by using the
frequency separation of the amplitude-steered a.rré.y in the vertical direction and con-
ventional phased array beamsteering in the horizontal direction. Several methods for
displaying the data are presented, with projection images o}fering computational sav-
ings. Nonlinear propagation is also discussed, demonstrating that although frequency
of the received signal is equated with position, nonlinear generation of harmonics does
not cause the appearance of false targets in the images. Experimental data are com-

pared with simulations to validate the simulations of the array operation.
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CHAPTER 1

INTRODUCTION

Acoustic arrays are used for many imaging applications, including medical imaging,
sonar, atmospheric imaging, seismic imaging, and nondestructive evaluation. Typi-
cally, one-dimensional arrays are used to collect data and two-dimensional images are
formed, where the first dimension is azimuth and the second dimension is range. For
medical imaging, extensions have been made to 1.5-dimensional arrays, which have
many elements in the azimuthal direction and few elements in the elevation direction
so that some focusing in elevation can be included. These 1.5-dimensional arrays are
also used to form two-dimensional images.

Two-dimensional arrays, which allow focusing and beamsteering in both azimuth
and elevation, are desirable in imaging applicattons because they offer the possibil-
ity of improved image quality for two-dimensional images or they can be used for
three-dimensional imaging. Three-dimensional imaging allows better visualization of
anatomy or structures. In medical imaging, three-dimensional images can provide
information on the shape of a solid mass, one of the parameters used to distinguish
benign and malignant tumors. Real-time three-dimensional imaging would allow a
physician to view the structures of the heart throughout the cardiac cycle. In sonar,
volumetric imaging is most often considered for short range applications (less than
10 m) such as fish counting, assisting divers, monitoring remotely operated vehicles,
or mine hunting. Real-time three-dimensional imaging could provide the visibility
required to locate objects such as damaged pipes in turbid water.

In seismic imaging or nondestructive evaluation, real-time implementation of three-
dimensional imaging is not critical because the targets are stationary. However, for
medical imaging, sonar, and atmospheric imaging, real-time data collection is impor-

tant. Transient events might be missed if the time to scan the volume is long. Also,
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images created off-line would be distorted by motion of objects in the scene during

data collection. The remainder of this thesis will focus on sonar and medical imaging.

1.1 Real-Time Three-Dimensional Ultrasound

Three-dimensional medical ultrasound exists; however, it is not real-time. Current
systems typically scan two-dimensional planes using linear arrays and then translate
or rotate the array to scan the next plane. Three-dimensional images are then formed
off-line [1]. Often for cardiac imaging, where real-time data collection is most critical,
data are collected over several heart beats, and then the data from differenct cycles are
combined so that a single cycle of the heart can be recreated as a cineloop. Successive
heart beats must be similar enough for the reconstruction. In many cases, irregular
heart beats are thrown out [2], [3], making it impossible to use these systems to
diagnose a heart abnormality.

Real-time three-dimensional imaging, meaning updating the volume of data at a
rate of 30 Hz, is difficult due to two problems. The first is a problem only because
of the current state of array fabrication technolbgy. The second is a more funda-
mental constraint, dependent on the properties of the medium. Qur study addresses
the latter; however, it is worth mentioning the issues of array construction. Three-
dimensional imaging requires a two-dimensional array. The difficulty in fabricating
two-dimensional arrays arises from the large number of very small, very closely packed
elements. A large number of elements is required to achieve a reasonable aperture
size for resolution. Elements must be small and closely packed because a fully sam-
pled array must have an interelement spacing of % or less in order to avoid grating
lobes, where A is the wavelength in the medium. For a system operating in water at
3 MHz, the wavelength is 500 um. As frequency increases, the wavelength decreases,
making the problem worse. Small elements can have poor sensitivity due to their
high electrical impedance, and small elements make electrical connections difficult.
Close spacing increases the potential for electrical or acoustic cross-talk. A large
number of elements implies a high channel count, which is difficuit to implement due

to space limitations. The number of elements can be reduced and the interelement
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spacing increased by using sparse array layouts [4], although reducing the number of
elements will increase the average sidelobe level of the beam pattern. The sensitivity,
cross-talk, and connection problems can be addressed using new technology such as
thick films, although much improvement is still needed [5], [6], [7].

The second challenge in implementing real-time volumetric imaging systems is
the slow speed of data collection. Data collection for a three-dimensional image using
techniques of two-dimensional imaging requires too much time for volumes to be
scanned in real-time. The physical limit is the speed of sound in the medium. For
example, collecting data for a medical image up to 15 cm deep in the body requires
25 ms, where the speed of sound is assumed to be 1540 m/s and where 128 pulses are
used to create 128 lines in the image. A three-dimensional image formed with 1282
pulses under the same conditions requires 3.19 s. Real-time three-dimensional imaging
using conventional data collection techniques would be impossible. The solution to
this problem is to form several beams from one transmitted pulse and to separate

reflections from different directions through processing.

1.1.1 Medical imaging -

Several groups have developed methods for real-time three-dimensional medical
imaging. Using a sparse synthetic aperture beamformer, Lockwood, Talman, and
Brunke [8] have developed a linear array that is mechanically rocked to collect data
for three-dimensional images. The system is a modification of currently available
systems that rock the transducer to collect a volume of data in that the rocking is ac-
complished at a high enough rate for the data collection to be real-time. Few transmit
pulses, each using a small number of elements, are used to reduce the data acquisi-
tion time for a single transducer position. With synthetic aperture beamforming, all
the receive beams corresponding to one transmit pulse can be formed simultaneously.
Using a linear array reduces the required channel count. This technique has been
demonstrated for medical imaging only in simulation.

Shen and Ebbini [9] have worked on coded-excitation in combination with a

pseudo-inverse operator so that multiple beams can be received at one time. This
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system has been tested for two-dimensional image creation using a one-dimensional
array. Independent codes are transmitted on each element, resulting in different im-
pulse responses in each steering direction. Returns from different directions are then
separated using filters. Their proposed method does not require a Nyquist sampled
array, so that fewer elements of the two-dimensional array may be used without de-
grading the image quality. Images formed using previous coded-excitation methods
with matched filter operators have suffered because correlations between beams in
different directions produce artifacts in the images. Shen and Ebbini’s technique
is reported not to have this drawback; however, the pseudo-inverse operator suffers
from consequences of the assumption that targets occur on a grid pattern. If target
positions differ from the grid pattern, the image quality is degraded.

Lu [10] has proposed a technique for three-dimensional imaging using limited
diffraction beams. In this case, a plane wave pulse is transmitted from the two-
dimensional array to illuminate the scene. Then in reception the same transducer
array is used to form an array of diffraction limited beams by varying the weight-
ing on the elements. Using a three-dimensional.inverse Fourier transform, a three-
dimensional image is created. This technique requires a fairly large, broadband array,
and it is limited to imaging the region directly in front of the array. The largest
cross-sectional area that can be imaged is equal to the area of the array. The imaged
area can be increased only by using a large number of transmit pulses. The method
has been tested using a phantom with embedded point scatterers [11]. The results
look promising, although the images reveal the dependence of the technique on the
broad bandwidth of the transducer.

Finally, researchers from Duke University have a real-time volumetric imaging
system, which is in operation [12]. Their system uses a sparse, two-dimensional
array. As reported in 1991, the volume is scanned in a pyramidal scheme, with 12
transmit pulses in the elevation direction and 52 transmit pulses in the azimuthal
direction, for a total of 624 transmit pulses per volume. Paralle] beamforming is used
in the elevation direction so that eight receive beams are formed for each transmit
pulse. The volume can be scanned eight times per second. Initial image quality was
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poor. To improve the image quality, they have been working on improving the two-
dimensional array, increasing channel count and frequency. They would also like to
implement parallel beamforming in the azimuthal direction as well as in elevation.

Although many groups have been working on the problem in medical imaging, the
ideal solution has not yet been found. Shen and Ebbini’s technique has not yet been
extended to volumetric imaging. Lu’s technique is promising; however, to achieve the
high frame rate, it requires that signals received by every element be stored, which
means having a large number of channels. As explained earlier, having a large number
of channels is difficult due to space considerations. The synthetic aperture methods of
Lockwood and Smith are fairly brute force methods to reduce the number of transmit
pulses used. The frame rate on the Duke system was 8 frames/s. In order to increase
the frame rate, the number of transmits will have to be reduced even further.

1.1.2 Sonar imaging

Three-dimensional sonar imaging has been developed for applications such as fish
counting, mine hunting, and inspecting structures. In general, systems are designed
to complement or replace optical systems, which are ineffective in turbid water. Sonar
imaging differs from medical imaging in the ranges of interest. Maximum ranges of
interest range from 170 m to 2.4 m, and operating frequencies range from 200 kHz
to 3.5 MHz. In order to accomplish real-time sonar imaging, even fewer transmit
pulses are available than for medical imaging. Several of the systems discussed in the
literature are based on transmitting a single pulse with a broad region of coverage
and then focusing or processing the received signals to produce an image. Jones [13]
uses the simplest system, transmitting a chirp over a broad region and then using
a sparse two-dimensional array to steer and focus the receive beam. Such a system
will suffer from poor signal-to-noise ratio due to the broad spread of energy in the
transmit and the high average sidelobe level of the receive beam pattern. Also, the
broad transmit beam will lower the achievable resolution.

In [14], a single transmit is used to insonify a region and a two-dimensional trans-

ducer array is used to receive reflected signals; however, the processing is not the
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same as conventional beamforming of the received signals. Instead, the processing
uses a noncoherent correlation of the received signals, or correlation of the envelopes
of the received signals. First, the magnitude-squared of the received signal from each
element is calculated. Each of these detected signals is multiplied by the envelope
of the transmitted signal appropriately delayed to correspond to the location of a
reflector at the assumed angle and range. The multiplied signal is then integrated,
and the sum over all the array elements is taken. A large sum indicates a target at the
assumed direction and range. The proposed method is reported to have the advan-
tages of no grating lobes regardless of interelement spacing and reduction in speckle.
However, it is acknowledged that the method will have poor angular resolution. In
fact, both angular resolution and depth of field depend directly on ct./ fo, where c is
the speed of sound, t. is the time duration of the transmitted signal envelope, and fo
is the carrier frequency. Angular resolution is also inversely proportional to the size
of the array. Since small angular resolution and large depth of field are desirable, the
best way to improve angular resolution is by increasing the size of the array; however,
total array sizes are generally limited. For exa.mple, in a diver held sonar, the array
must fit into a system that a diver can hold. In addition, although -3 dB beamwidth
of the correlation system can be made comparable to that of a focused beamforming
system, the -10 dB and -20 dB beamwidths of the correlation system are much larger
than those of the focused beamforming system, meaning poor image contrast. This
system has been demonstrated in simulation for three-dimensional imaging of few
point targets. .

Ishihara et al. have developed a system that uses a coded wavefront [15]. As
discussed earlier, coded wavefront systems suffer from image artifacts due to the non-
orthogonality of beams in different directions. Here, multiple transmits and receptions
are used to compensate for this problem. As presented, the maximum range tested is
170 m. Collecting data for and reconstructing one image requires approximately one
second. For much shorter ranges, reconstructing an image would require less time;
however, the requirement for multiple transmit pulses limits the maximum achievable

frame rate.
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Other researchers are developing lens-based systems. Belcher et al. [16] and
Kamgar-Parsi et al. [17] have developed three small, high-frequency sonars that use
lenses. In both cases, the transmitter is a single element or row of the two-dimensional
array. The receiver is the two-dimensional array located in the focal plane of the lens.
An acoustic camera is being developed by Erikson at Lockheed Martin. It is also a
lens-based system using a transducer hybrid array (THA) and a C-scan format for
data collection [18]. A separate transmitter, with a wide beam, is used to insonify
the region of interest. Then, an acoustic lens is used to image multiple planes onto
the acoustic array. In all of these systems, the lens accomplishes the focusing, so
that the electronics requirement is reduced. A small number of range planes can be
collected with a single transmit pulse; more range planes are collected with successive
pulses. The total range depth that can be imaged is determined by the depth of
focus of the acoustic lens, which is limited. The design range for Erikson’s system is
approximately 120 mm, much shorter than our intended range. The maximum range
is limited by the fact that multiple transmit pulses are required to collect the entire
volume of data. .

The systems mentioned in this section all use a transmit pulse with broad coverage.
Resolution would be improved if the transmitted beam could be focused or made

narrow in multiple directions.

1.2 Spatial Frequency Separation

Another approach to achieving multiple beams with oné transmit pulse is to steer
the beam by changing the frequency. F. L. Lizzi and K. W. Weil hold a patent on a
transducer device which uses change in frequency to steer a beam [19]. Using a curved
transducer with tapered thickness and then exciting the transducer with different
frequencies, beams with different origins and steering directions can be radiated. By
changing the frequency continuously, the beam is scanned through a sector. The
system is limited by the fact that the ratio of highest to lowest excitation frequency
cannot be more than three. Otherwise, at the highest frequencies, multiple beams
will be radiated with different orientations and steering directions, as the transducer

7
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will radiate from all places where the excitation frequency is an odd multiple of a half
wavelength of thickness.

This thesis presents the use of spatial frequency separation achieved using amplitude-
weighting to solve the problem of slow data collection. The concept of steering the
maximum response of an array using amplitude weighting was introduced by Hughes
and Thompson in 1976 [20]. At that time, the intent of amplitude steering was to
tilt the maximum response of the beam pattern without using multiple delay lines or
phase-shift networks, which are bulky. In their formulation, the beam was steered to
a particular direction at a single frequency, and the fact that the steering direction
changed with frequency was considered a drawback of the design.

By operating a linear amplitude-steered array in broadband mode, with an im-
pulsive or chirp excitation, the maximum array response is swept over a range of
angles. A sector can be scanned using a single transmit pulse, leading to fast two-
dimensional imaging of the sector, compared to conventional imaging which uses one
transmit pulse for each steering direction. The two-dimensional amplitude-steered
array (patent pending), which can be used for volumetric imaging, uses frequency
separation to determine vertical position and conventional beamforming to determine
horizontal location. Although the array may be a fully sampled two-dimensional ar-
ray, a separate channel is not required for each element. Only four channels are
required per column of elements. Potential advantages of using this array for vol-
umetric imaging are fewer electronics than required for proposed medical systems
that must address each element individually and better resolution than current sonar

systems that use a broad transmit beam.

1.3 Organization of This Thesis

This research was undertaken as part of a larger project developed by the Applied
Research Laboratory (ARL) at the Pennsylvania State University. The team at ARL
was led by W. Jack Hughes and Charles Allen. Other subcontractors include Northrup
Grumman, Blatek, Inc., and TRS Ceramics, Inc., whose responsibilities were issues

of array construction. This thesis is a study of the operation of the amplitude-steered
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array for imaging. Although we focus on an underwater imaging application, the
array may be modified for use in other systems, such as medical imaging systems.

Chapter 2 introduces the amplitude-steered array by examining fundamental is-
sues of how the linear amplitude-steered array would be used to form two-dimensional
images. In particular, we study the tradeoff between axial and lateral resolution, and
we survey various forms of time-frequency processing to form images. Chapter 3
discusses the extension of the linear array to a two-dimensional array for volumetric
imaging. As presented, the array is a linear amplitude-steered array in one direction,
and a conventional phased array in the perpendicular direction. A specific applica-
tion is chosen around which a specific array is designed. The array layout is discussed
along with the achievable resolution. Finally, strategies for presenting images from
the data are given, including surface rendering, slice images, and projection images.
The analyses in Chapters 2 and 3 are performed with simulated data. In Chapter
4, we compare simulated results to experimental data collected with a low frequency
version of the linear amplitude-steered array. Having validated the simulations with
experimental data, we show the effect of nonlinga.r propagation on the operation of
the array in Chapter 5. Nonlinear propagation results in the generation of higher
harmonics, and our processing equates frequency with position. Therefore, we must
consider the possibility that false targets will appear in the images. Finally, Chapter
6 gives a summary of research results and suggestions for future work.
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CHAPTER 2

ONE-DIMENSIONAL
AMPLITUDE-STEERED ARRAY

The amplitude-steered array, introduced by Hughes and Thompson in 1976 [20],
was originally designed to steer a monochromatic signal to a particular direction.
Using the array for an imaging application requires an evaluation of the field pattern,
the achievable resolution, and the derivation of signal processing methods to form an
image. This chapter is concerned with issues of using the linear amplitude-steered ar-
ray for two-dimensional imaging. The basic operation of the array, an analysis of axial
and lateral resolution, and the development of time-frequency processing for forming
images are discussed in this chapter. The results presented in this chapter provide
the basis for the extension to three-dimensional imaging with the two-dimensional
array presented in the next chapter.

2.1 Array Field Pattern

In this discussion, we first consider the one-way far-field pressure of a linear array
of equally spaced, equiamplitude point sources. Figure 2.1 gives a diagram defining
variables. (All figures and tables appear at the end of the chapter.) To steer the main
lobe to 6, the signal from each element can be phase-shifted by multiplying by the
factor e—7(nkudsinfo) where n is an index used to enumerate the elements, kg is the
wavenumber at a particular frequency, and d is the distance between the elements.
Thus phase shift will only steer the main lobe to 6, at the frequency used to calculate
ko; therefore, a fixed phase shift is generally used for narrowband operation. The
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pressure field can be expressed as

—jkr ) ) ) ke
P(r,6) = CT v pind(ksin8—kosinfo) _ Ne

H(9). 2.1)

-

Now, we consider only the array pattern, H(#). We assume that we have an array
with an even number of elements N, and we measure the phase for each element
relative to the center of the array. To simplify the expression, we replace % sin @ with

u and %?sin fy with ¢.

N
2

1 N
H() = i Yy efln-lu-e) (2.2)

_N
n=— T+1

Combining terms of the sum in pairs, we have
H() = %[cos(u —¢) +cos(3(u — ¢)) +--- +cos((N — 1)(u — ¢))] (2.3)

Using the trigonometric identity for the cosine of a sum, Equation (2.3) can be rewrit-
ten as

H(8) = Z[cos ¢ cosu + cos 3¢ cos 3u + - - - + cos (N — 1)¢) cos (N — 1)u)

(2.4)
+singsinu +sin3¢sin3u + -+ - +sin ((N — 1)@) sin (N — 1)u)]
A corresponding equation for an array with an odd number of elements N,y is
H(@B) = §% [0.5+ cos2¢cos2u + cosdgcosdu
+ -+ +¢0S ((Noad — 1)¢) cos ((Noaa — 1)u) (2.5)

+sin 2¢ sin 2u + sin 4¢ sin 4u
+ -+ +8in ((Noas — 1)¢) sin (Noaa — 1)u)]

Using Equation (2.4), we shift our interpretation of how the beamsteering is
achieved. At the beginning of this discussion, we steered the beam by phase-shifting
a linear array of equiamplitude elements. Now we steer the beam by weighting the
elements. In Equation (2.4), cos((2n — 1)¢) and sin((2n — 1)¢) terms are constants
which we interpret as amplitude weights on the elements. The cos((2n — 1)u) and
sin((2n — 1)u) terms represent combinations of pairs of elements on opposite sides of
the center of the array in phase or 180° out of phase, respectively. Therefore, Equa-
tion (2.4) can be interpreted as the sum of the outputs of two arrays. The first array
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(sum of cos(2n — 1)u terms) combines elements on opposite sides of the center with
equal amplitudes and in phase. We call this the phase-symmetric array. The second
array (sum of sin(2n — 1)u terms) combines elements on opposite sides of the array
with equal amplitudes and 180° out of phase. We call this the phase-antisymmetric
array. According to Equation (2.4), the outputs of the two arrays should be added
in phase; however, the output of a phase-antisymmetric array is inherently 90° out
of phase with the output of a phase-symmetric array. The outputs of the two arrays,
therefore, must be added with an additional +90° shift [21]. The sign of the shift
determines whether the beam is tilted towards positive 6, or towards negative 8,. We
note that if we used only one set of weights, cosine or sine, the beam pattern would
have main lobes at both positive 8 and negative 6.

Conceptually, we have used one array with two sets of weights, or two arrays, to
achieve beamsteering. In practice, the array layout is designed such that the phase-
symmetric and phase-antisymmetric arrays share the same space. The cos(2n — 1)¢
and sin(2n —1)¢ factors in Equation (2.4) are the amplitude weights which determine
the steering direction of the main beam, but they do not have any effect on sidelobe
levels. Further apodization can be applied to achieve reduced sidelobe levels, as
demonstrated in Appendix A.

If the array described above is excited by a frequency different from the design
frequency used to calculate ¢, the maximum response will occur at an angle different

from the designed steering direction 6.

=£°2‘1sinoo =Msin0f ’ (2.6)

¢ 2

The subscript f was added to k and 4 to emphasize that the new steering direction
is calculated for a specific frequency f. Rearranging to solve for the new steering

direction @y gives
6 = sin-l(%sinao) @.7)
which can be restated as
O = sin“(f—;sinao) (2.8)
12
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As the frequency increases, the angle that the beam is steered away from broadside
decreases. Table 2.1 lists the steering direction for several frequencies for a 9.76-cm-
length array, which is designed to steer to 5° at 5.6 MHz. An example of several
beams from the array is shown in Figure 2.2. Beams are shown for 5.6 MHz (5°), 4.5
MHz (6.23°), 3.4 MHz (8.25° ), 2.3 MHz (12.25°), and 1.2 MHz (24°). From the table
and the figure, we see that as the frequency decreases, the beamwidths increase and

the spacing between the beams also increases.

2.2 Resolution Tradeoff for Imaging

We take advantage of the separation of frequencies caused by the amplitude
weighting to collect data for a two-dimensional image using a single transmit pulse.
A linear-FM chirp is transmitted from the array. As the frequency changes, the main
beam is swept over a sector. The reflected wave is received by the array and filtered
using a matched-filter to accomplish pulse-compression. Then the short time Fourier
transform (STFT) is calculated to determine the range and lateral position of the
targets. The one-dimensional amplitude steered &rray localizes targets using time-of-
flight and frequency information. The temporal position of the FFT window gives the
range of the target, and the frequencies contained within the window give the lateral
position of the target. In this section, we derive the af:hievable resolution using this
scheme.

2.2.1 Definition of resolution .

In traditional imaging, where the transducer is shock-excited, axial resolution is
determined by the spatial length of the transmitted pulse, which can be related to
the relative bandwidth of the transducer and the wavelength at the center frequency
and which is independent of the size of the transducer [22].

In analyzing the resolution achieved by the amplitude-steered array, we will use
one-point definitions for lateral and axial resolution, which correspond to measuring
the axial and lateral extent of the point spread function. This definition is used
in contrast to a two-point definition, which would specify the minimum separation
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between two points that allows the points to be distinguished. For the amplitude-
steered array of point elements operated at a particular frequency f, the array pattern

can be written as
1 sin(4kd(sin 6 — sin 6y))

N sin(3kd(sin 6 — sin 6¢))
where ksinfy = ko sin,. We define lateral resolution as the -3-dB width of the one-

H(f) =

(2.9)

way array pattern. The -3-dB points on either side of the maximum are the points

where the argument of the periodic sinc is +:1.3894. We use the expression

%kd(sm 0_sa5 — sinfy) = +1.3804 (2.10)
Solving for §_34p on each side of the maximum array response,
o —lye 0.4423\
6t,yp = sin'(sinf; + Nd )
- e —lfe 0.4423\
0p = sin™(sindy -~ )
a = 03345 — 0 yup (2.11)

where a is the lateral resolution in degrees.
Axial resolution is defined as the spatial leng;h of the pulse:

AR= %t. (2.12)

where c is the speed of sound in the medium and ¢ is the temporal length of the pulse.
For conventional imaging, where the transducer is shock-excited, this description of
axial resolution can be related to an expression for axial resolution which depends on
the wavelength at the resonance frequency and on the @ of the transducer, where Q
is defined as 27 times the energy stored at resonance divided by the energy lost per
cycle [22]. That expression is given by

AR= —Q4—)‘ (2.13)
An alternate definition of Q, @ = {?, where f, is the resonance frequency and Af
is measured at half power points, is consistent with the previous definition of @ [23].
Therefore, Equation (2.13) is a definition of axial resolution in terms of the inverse
of the relative bandwidth of the transducer.
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We seek a definition of axial resolution that is similar in form to Equation (2.13).
However, our definition of resolution will not depend on the @ of the transducer, but
rather on the inverse of the relative bandwidth of the received signal -ALf, which we call
Qsig- We transmit a chirp and then apply matched filtering for pulse compression.
The output of the pulse compression operation is approximately a sinc if the time-
bandwidth product of the received signal is large enough [24]

. r2xAfz
p= ) 14

c
where p is the correlation between the received signal and the impulse response of the
filter, Af is the bandwidth of the received chirp, c is the speed of sound, and z is the
range which is calculated as £ when the array is operated in pulse-echo mode. Pulse
compression of a linear FM chirp compensates for the quadratic phase and therefore
gives an approximately rectangular band of frequencies with linear phase. In the time
domain, this descgiption corresponds to a sinc function. The discussion of whether
or not the criterion on the time-bandwidth product has been met is reserved until
Section 2.2.2. We use the -3-dB points of p to find the axial resolution. The function
falls to -3 dB, relative to the maximum, when the argument of the sinc function is

equal to +1.3894:

z—mf:—‘““ = 1.3894 (2.15)
We write

2—?9{-&3@ = 1.3804 (2.16)

and solve for 2z_345, where the factor of 2 accounts for the -3-dB points on each side

of the maximum. The expression for axial resolution is
AR =2z_34p = 0.4423 Q,i\ (2.17)

where Qi is the inverse of the relative bandwidth of the received signal, and ) is the
wavelength at the center frequency of the received signal f. Although this expression
does not explicitly depend on the length of the array, we will see in the next section,
where we discuss the tradeoff between axial and lateral resolution, that Q,;, depends
on the length through the beamwidth. We could have reduced Equation (2.16) to an
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expression for z_zgp that was a function of Af, rather than a function of both Qsig
and A; however, we prefer to have an expression in terms of the wavelength so we can
see how resolution will change with center frequency, rather than with bandwidth.

Note that for good resolution, we would like both 0_345 and z_z4p to be small.
Also, note that while absolute range position of the target is given by the time-of-
flight (temporal position of the FFT window), the range resolution depends only on
frequency bandwidth. Similarly, lateral position may be given by the center frequency
of the returned signal, but lateral resolution is determined by the length of the array
in terms of number of wavelengths.

2.2.2 Axial and lateral resolution tradeoff

The amplitude-steered array spatially separates frequencies by virtue of the fixed
phase shift used to calculate amplitude weights. If the frequencies could be com-
pletely separated, i.e., if the beams were infinitely narrow, a point target within the
insonified region would produce a single frequency return, implying that two point
targets separated only in range could not be distinguished. In reality, it is possible to
distinguish multiple targets in the same direction at different ranges because beams
are not infinitely thin, but overlap due to the finite length of the array.

Figure 2.3 conceptually shows the tradeoff between axial and lateral resolution.
In parts (a) and (b), the curves plotted show the steering direction versus frequency.
The curves are the same for both plots. The error bars indicate the -3-dB beamwidth
at each frequency. We can see from the error bars that lateral resolution improves
with increasing frequency, as expected. Axial resolution can also be determined from
each plot. At a particular steering direction, by observing the range of frequencies
that overlap, we can determine the bandwidth at that particular direction. In both
parts (a) and (b) of Figure 2.3, the frequencies that overlap at a steering direction
of 15° are located between the dashed lines. The extent of the dashed lines along
the frequency axis tells us Af. We know the “resonance frequency,” the frequency
with the greatest amplitude at 15°, from the curve. Therefore, we can determine the
wavelength and Q,;,. Axial resolution can be calculated using Equation (2.17).
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Figure 2.3(a) shows field characteristics for a I-cm-length array. If the length of
the aperture is increased from 1 cm to 4 cm, the lateral resolution improves, illustrated
by the decrease in size of the error bars between Figure 2.3(a) and 2.3(b). However,
that decrease in beamwidth implies a decrease in the range of frequencies that overlap
in a particular direction, illustrated by the more narrow range between the dashed
lines in Figures 2.3(a) than in 2.3(b). Therefore, @i, increases with increased array
length, and the axial resolution is worsened. Therefore, there is a tradeoff between
axial and lateral resolution that depends on the length of the array, or equivalently,
on the width of the beam at each frequency.

Finite element size may change the beamwidth, which affects Q,;; and therefore
axial resolution. With finite elements, the overall array pattern of Equation (2.9) is
multiplied by the beam pattern of the individual element, which can narrow the main
beam, thus improving the lateral resolution and degrading the axial resolution. For
an array of rectangular elements, the unsteered beam pattern is given by
1 sin(4¥ sin §) sin(% sin 6)

N sin(%sinf) , % sing

H(6) = (2.18)

where a is the width of the element. The largest possible width of the element is the
center-to-center spacing of the elements (a = d), which would give a continuous aper-
ture. If V is large, the expression for the width of the main beam will be dominated
by the periodic sinc term, the array pattern. Likewise, if @ < d, the expression for
the width of the main beam will be dominated by the array pattern. In the other
extreme, if a =d and N = 2, the effect of the element size'is to double the length of
the array compared to the array of two point elements. In that case and in similar
cases where N is small and a = d, the finite element size will have a larger effect
improving lateral resolution and degrading axial resolution. In general, the effect will
be small for practical imaging arrays.

Finally, when deriving the expression for axial resolution, we made use of an
approximation that the output of the pulse-compression operation is a sinc function if
the time-bandwidth product is Iarge enough. One numerical value for “large enough”
is 100. Whether or not this condition is met depends on the received signal, which
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means that it depends on the length of the array and the chirp rate. The bandwidth
of the received signal will depend on the range of frequencies that overlap, which
has been shown to depend on the length of the array. The chirp rate can be set
independently so that the criterion is met. One limit to how slow the chirp rate can
be is the most shallow range of interest. The entire transmit pulse must be emitted

before any signal is to be received.

2.2.3 Simulation and results

We analyze the tradeoff between axial and lateral resolution for a linear array by
simulating the received signal from point targets when the array is used in pulse-echo
mode. Three arrays with different lengths are used. The first array has 452 elements
with center-to-center spacing of 0.216 mm (9.76-cm-length aperture). For comparison,
we also simulate arrays with 694 elements (15-cm-length aperture) and 347 elements
(7.5-cm-length aperture), but otherwise similar designs. The amplitude weighting is
determined so that the main beam is steered to 5° at 5.6 MHz. The transmitted signal
is a linear FM chirp with frequency swept from_1.2 MHz to 5.6 MHz. The targets
are placed at 20 m, well beyond the intended maximum range, so that they are in
the far field for all steering directions and all array lengths. The angular positions
of the targets range from 6° to 24°. The speed of sound is assumed to be 1500 m/s
for all simulations. Attenuation is not included. The transducer we simulate has
a broadband, low-Q impulse response. The main effect of the transducer’s transfer
function is to reduce the amplitude of targets away from the resonance frequency of
the transducer. Therefore, in the simulations we replace the transducer’s impulse
response with an impulse.

The operation of the linear amplitude-steered array has been simulated using the
Field IT program, developed by J. A. Jensen [25], [26]. Figure 2.4 shows three images of
six point targets, using the three different arrays. Comparing the images in Figure 2.4,
particularly for the targets at the higher steering angles, we can observe the tradeoff
in axial and lateral resolution that depends on the length of the array. In order to
quantify the tradeoff between axial and lateral resolution, resolutions were measured
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from images of point targets. From the image in part (c) of Figure 2.4, we can
see that both axial and lateral resolution improve with decreasing steering direction,
corresponding to increasing frequency. The images in parts (a) and (b) show the
improvement in lateral resolution with decreasing steering direction; however, the
improvement in axial resolution with decreasing steering direction may be difficult to
appreciate.

In addition to the resolution tradeoff that arises due to the size of the array, there
is a tradeoff between axial and lateral resolution due to the processing. The length of
the sliding FF'T window limits the resolution of targets. A very short FFT window
implies poor frequency resolution and therefore poor lateral resolution, but it also
implies good time localization and therefore good axial resolution. The FFT window
can be increased to improve lateral resolution until the fundamental limit on lateral
resolution due to the size of the array is reached, but a long window means poor aa;ia.l
resolution. In parts (a) and (b) of Figure 2.4, the difficulty in seeing the degradation
of axial resolution due to the length of the array is a result of the relatively long
Hanning window used to form the images. For the two shorter arrays, the window
length is longer than the achievable axial resolution for the higher frequency (smaller
steering direction) targets.

Lateral and axial resolutions were measured from images formed using different
length FF'T windows in order to reduce the effect of processing on the measurements,
so that we could measure the tradeoff in resolution only due to the size of the array.
Axial resolution was measured by setting the window length to be short, 8.333 pus.
Lateral resolution was measured by setting the window length to be long, 0.147 ms.
The long window length was chosen by increasing the length of the FFT window
until the improvement in lateral resolution at 6° was less than 0.5%. The images
in Figure 2.4 are formed using a window length of 50.8 us, which is a compromise
between the two extremes.

Measurements were made of the -3-dB beamwidths in the lateral direction and
the -3-dB signal length in the axial direction (Table 2.2). For all steering directions,

lateral resolution improves with increasing array length, and axial resolution degrades
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with increasing array length. Calculated and measured lateral beamwidths and axial
resolutions are shown in Figures 2.5 and 2.6, respectively. Calculated beamwidths
were found using Equation (2.11). Figure 2.5 shows that beamwidths measured from
simulated data agreed with calculated beamwidths to a steering direction of 14°. At
higher steering angles, corresponding to lower frequencies, the measured beamwidths
were larger than calculated beamwidths. This agreement may be improved by using
a longer FFT window. Axial resolution was calculated using Equation (2.17), where
Qsig Was calculated using the predicted beamwidths for each frequency and assuming
that the array had a flat frequency response. If a given steering direction was within
the steered -3-dB beamwidth of a frequency f, then f was included within A f used
to calculate Q,;,. Figure 2.6 shows that the calculated and measured axial resolutions
agreed well. The average Q;, predicted for the 7.5-cm, 9.76-cm, and 15-cm apertures
are 27.60 3 0.094, 35.90 & 0.021, and 55.18 = 0.054, respectively. The average Q,i,
measured for the 7.5-cm, 9.76-cm and 15-cm apertures are 28.5 % 1.85, 36.1 + 2.01,
and 54.1 & 5.45, respectively. For a given array length, Q,:;, remains approximately
constant over the band of frequencies used, whicl_l by Equation (2.17) means that for
a given array length axial resolution depends only on wavelength.

Resolution was also measured in the vertical (out-of-plane) direction for the 452-
element, 9.76-cm length array. In the vertical direction, resolution is only dependent
on the height of the elements. For the simulation, we assumed the elements were
twice as tall as they were wide, or 372 um tall. Resolution can be predicted using
Equation (2.19): .

@y,-3a8 = 2 * tan~'(0.4423)\/D) (2.19)

where a, 345 is the angle of spreading in the vertical direction, A is the wavelength,
and D is the height of the elements. This equation is derived from the beam pattern
of a rectangular element. In the vertical direction and in the far field, the beam is
defined by sinc(¥2Z), where k is the wavenumber, D is the height of the element, z is

the coordinate along the height but at the far-field plane, and z is the axial coordinate
perpendicular to the array element. The -3-dB points are found when the argument
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of the sinc function is equal to +1.3894. £ is equal to tan($). Values for vertical
resolution predicted and measured through simulation are presented in Table 2.3.

2.2.4 Summary of resolution study

The far-field array pattern was derived to show how amplitude-weighting causes
frequency separation. Expressions were derived to predict axial and lateral resolution
in the far field of the array. The theoretical values were used to show that both axial
and lateral resolution were dependent on the length of the array. When operated in
broadband mode as in the case for imaging, the axial resolution is directly dependent
on the size of the array in terms of wavelength, which is different from the operation
of conventional transducers. In fact, resolution in the lateral direction can be traded

for resolution in the axial direction by changing the array size.

2.3 Time-Frequency Processing for the Formation
of Images

Many time-frequency distributions have been studied for various purposes, each
having its own benefits and drawbacks. In sonar imaging, time-frequency distributions
have been used to identify targets based on characteristics of the distribution for the
reflected signals [27], [28]; however, time-frequency processing has not been used to
form an image of the target.

In preceeding discussions of the amplitude-steered array, we used the spectrogram
to form images. Although the spectrogram is conceptua.lfy simple and easy to pro-
gram, as the extension of the FFT, there are several drawbacks that make it possibly
undesirable as the means for forming the image. In particular, there is an inher-
ent tradeoff between time and frequency resolution, so that an improvement in one
direction implies a degradation in the other.

Now we investigate the results for other time-frequency distributions. It is gener-
ally accepted that there is no known distribution that is ideal for all cases, but that
the best distribution for an application must be chosen based on the properties of the
signal and the criteria for the result. We compare five distributions, including the
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spectrogram, for a test signal which is a simulated reflection from seven point targets.
The distributions we have chosen are the spectrogram, the constant-Q spectrogram
[29], the Wigner distribution [30], the smoothed pseudo-Wigner distribution [31], and
the Choi-Williams distribution [32]. These distributions are among the most common
distributions discussed in the literature.

First, we discuss properties of each of the distributions. In Section 2.3.2, we
describe our test signal, and the basis for comparison of each of the distributions.
Finally, we give results and conclusions. In the following discussion, the terms time-
resolution and frequency-resolution are used; however, the terms range-resolution and

lateral-resolution, respectively, could easily be substituted.

2.3.1 Time-frequency distributions

Two good reviews of time-frequency distributions and their properties are [31]
and [33]. In the field of time-frequency analysis, we generally seek a distribution
that describes the intensity of a signal simultaneously in time and frequency. In
general, it is considered desirable to be able to integrate over all frequencies to get
the instantaneous intensity at time ¢, and to be able to integrate over all time to get
the instantaneous intensity at frequency w.

Many different distributions exist. In fact, an infinite number of them can be
generated by changing the kernel function in the following equation, which describes
distributions that are the Fourier transforms of a local autocorrelation function:

D(t,w) = %5 / / / g iO—ITwtibe g9 r)s*(u — %T)SGI. + %‘r)dudfdﬂ (2-20)

where D is the representation of the signal in the time-frequency plane, ¢ is the
kernel, s is the signal in the time domain, and s* is its complex conjugate. The kernel
may depend on time and frequency and may also be a functional of the signal. The
distributions generated by different kernels satisfy different desirable properties and
they produce different energy concentrations. The properties of a distribution can be
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investigated by looking at the kernel.

$(0,0) =1 = [D(t,w)dw = |s(¢)[?

#(0,7) =1 = [D(t,w)dt =|S(w)[*

$0,0)=1 = [D(tw)dwdt=1
#0,7) =¢*(-0,-1) => D(t,w) is real.

(2.21)

S(w) is the Fourier transform of the signal, s(t). |s(¢){* and |S(w)[? are referred to
as marginal densities. The first two equations give the conditions on the kernel so
that the marginal densities are preserved, meaning that the instantaneous energy at
a specific time or frequency can be calculated by integrations of the joint distribution
through frequency or time, respectively. The third equation indicates that if the
kernel is normalized to equal 1 at (@, 7) = (0,0) then the total energy is preserved.

If the kernel is independent of the signal, the distribution given by Equation (2.20)
is bilinear in the signal, meaning that the signal enters the equation only twice. Bilin-
ear distributions generally suffer from cross-terms which interfere with the interpre-
tation of the distribution as an image. In our imaging application, we are interested
in time and frequency resolution as well as low c?:oss-term levels.

In the following discussion, both continuous and discrete expressions are given
for the distributions. Generally, the distributions are formulated in the continuous
domain, and discrete formulations are obtained from the continuous expressions. The
transition to discrete expression is not unique. In many cases, the discrete distribution
is periodic with period 7 rather than 27, which is the usual period for a discrete signal.
To avoid aliasing, the signal can be sampled at twice the Nyquist rate, or the analytic
signal, which is zero for the negative frequency components, can be used to calculate
the distribution.

Spectrogram

The STFT is the classic method for studying signals whose spectra vary with time.
The spectrogram is computed as the magnitude-squared of the STFT. It is quadratic
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in the signal and is given by the expression

2

Dit,w) = \/% [ e s(xIn(e —ryar (2.22)

where h(t) is the window function used to calculate the STFT. The spectrogram can
be expressed using the form of Equation (2.20), with the kernel defined as

80,7) = [ b~ %r)e-fﬂuh(u + %'r)du (2.23)

The spectrogram has the advantage that cross-terms are reduced to zero as long as
the signal components do not overlap in time. And the spectrogram is a nonnegative
definite distribution which leads to easy interpretation as an image. The spectrogram
preserves the total energy of the signal if the window is normalized, but it does not
preserve the marginal densities.

The time and frequency resolution of the spectrogram are determined by the
window h used in the calculation. Different tradeoffs can be made by changing the
window shape, although for a given window shape, the time and frequency resolutions
are determined by the window length. The window cannot be narrow in both the
time and frequency domain, so there is an inherent tradeoff in resolution for the
spectrogram. Using a definition of resolution that includes both energy concentration
and cross-term level, Jones and Parks showed that with an appropriate window, the
resolution of the spectrogram could be better than that of some other distributions,
including the Wigner distribution [34]. In our case, we define resolution as the energy

concentration and consider cross-terms as an additional issue.
Constant-Q Spectrogram

The constant-Q distribution is a special case of the spectrogram, in which the
window length is chosen based on the frequency sample being calculated. The number
of cycles in the window is kept constant; therefore, a constant ratio between center
frequency and bandwidth can be maintained. The constant-Q character is a better
match to our received signals. As shown in Section 2.2.3, we expect our received
signal to have a constant-Q quality, so that signals with a high center frequency also
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have a wide bandwidth and therefore a short time duration. We expect signals with
a low center frequency to have a more narrow bandwidth and therefore a longer time

duration.

The expression for the constant-Q spectrogram is given by [29]:

1 M-t 2

DI = |yg 3= Wik, mlslnlec(—72nQn/N[K) (2.2

where s is the signal, N[k] is the number of samples used to evaluate the expression
for frequency sample k, Wik, n] is a window function set to a Hamming window, for
example, and Q is defined as -£; AP where f is the frequency.
Expressed using the form of Equation (2.20), the constant-Q distribution is given
by (35]
D(t,w) = lil;r- [ s(T)h((t — 1) %)e""‘"’dr i (2.25)

In the constant-Q spectrogram, cross-terms are reduced to zero unless the sig-
nal components overlap in time, as for the conventional spectrogram. However, the
constant-Q spectrogram also retains some of the undesirable properties of the spec-
trogram. There is still a tradeoff between time and frequency resolution that is based
on the window length. That tradeoff is quantified by a single value Q, the length of
the window in terms of number of cycles.

This distribution has been used to analyze music signals, where chords have a
constant distance between component frequencies, when the frequencies are plotted
on a log scale [29]. The authors point out that they initially tried to use the FFT
algorithm because of its computational simplicity; howe\;ér, they found that plot-
ting the information versus the logarithm of frequency to conform to the pattern
expected from musical notes, they had too much information at high frequencies and
too little information at low frequencies. In mapping the data from the linear to
the logarithmic domain, at low frequencies they had few linear points correspond-
ing to many logarithmic points. At the high frequencies, the opposite was true. In
our imaging application, we plot the results of the FFT calculation versus # where
6 = sin~(f *sin(fg)/ f). For constant frequency spacing which is given by the FFT,

we have many points at small steering angles and few points at large steering angles.
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. If we want constant angular spacing at small steering angles, we have many frequency
points to map to few angular points. Conversely, at large steering angles we have few
frequency points to map to many angular points.

Wavelet transforms also have the “constant-Q” quality. The wavelet transform is
given by
W(t,a) = [ s(r)v/ay"(a(r —t))dr (2.26)
where 7(t) is the analyzing wavelet. This is the time-scale expression for the wavelet
transform. In the time-frequency expression, the scale a would be replaced by the
ratio of frequency to center frequency of the analyzing wavelet £.

Wigner Distribution

The Wigner distribution has received much attention because it is one of the
oldest distributions and because it produces a time-frequency representation with the
greatest resolution. But the Wigner distribution also has very high cross-terms. This
distribution is given by

1 . 1 1
D t [ / —JTW * —- ad .2
(¢, w) 5] €8 (t 2'r)s(t + 2T)d1' (2.27)

where, as before, s is the signal and s* is its complex conjugate. The kernel is simply
1, which, from the properties given in Equation (2.21), implies that the distribution
preserves the marginal densities and the total energy and that it is real. The Wigner
distribution is not necessarily zero when the signal is zero, due to the cross-terms;
however, it is zero before the signal starts and after the signal finishes. The distribu-
tion can have negative values. )

The Wigner distribution is periodic with a period w. Therefore, to produce a
representation that is free from aliasing, the signal must either be oversampled by
a factor of two, or the analytic signal must be used. Using the analytic signal is
beneficial for other reasons beyond avoiding aliasing. Cross-terms appear when two
frequency components interfere with each other, which includes positive frequencies
interfering with negative frequencies from the same signal. Using the analytic signal
will reduce the number of cross-terms since there will no longer be negative frequency

components.
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The discrete version of the Wigner distribution is given by [31]

1 r=L—-1 )
D(n,k) = - Y s(n—T)e " Ng(n + 1) (2.28)
r=—L+1

where the limits are included for practical evaluation of the sum. The total length
2L — 1 should be equal to or longer than the duration of the signal.

Smoothed Pseudo-Wigner Distribution

The smoothed pseudo-Wigner distribution is an attempt to reduce the oscillating
cross-terms in the Wigner distribution. The smoothed pseudo-Wigner distribution is
given by

D(t,w) = / / g(t — ) H(w — ") DV (¢ o) dt du (2.29)

where g filters in the time direction and H is a filter in the frequency direction. If
the filter g(t) is a delta function, the distribution is referred to as the pseudo-Wigner
distribution.

Smoothing is applied independently in the time and frequency directions; there-
fore, we do not have the undesirable connectiom between the two resolutions as in
the case of the spectrogram. Smoothing degrades the resolution in the direction in
which it is applied, and the smoothing operation destroys the preservation of the
marginal densities. For some smoothing filters, we can get a nonnegative definite dis-
tribution, but not with Gaussian filters. Therefore, we must choose between having
a nonnegative distribution and preserving the marginal densities.

The discrete version of the smoothed pseudo-Wigner distribution is given by a
discrete convolution of low-pass filters and the Wigner distribution in the time and
frequency directions.

Choi-Williams Distribution

The Choi-Williams distribution was created to reduce cross-terms while preserving
the marginal densities. The Choi-Williams distribution is given by

D(t,w) = / e IwT [ / \/4“];_2/0:tp( (Z'r: /22) s(p+ g—)s‘(u - g)d[z] dr (2.30)

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where ¢ is the parameter used to control the properties of the distribution. Small o
implies more smoothing and reduction of the cross-terms. However, this also leads
to greater loss of resolution. The loss of resolution is not independently controlled
for the time and frequency directions because only a signal parameter o is used. The
Choi-Williams distribution has the drawback that it is difficult to reduce cross-terms
if two signal components occur at the same time or the same frequency [33].

The discrete version of the Choi-Williams distribution is given by Equation (20)
of [32]:

D(n,k) = 2X7=% Wy(r)e 32kr/Nx
(2.31)
o Wit (1) 7,137;3‘”? (—;‘i’,—,s(n +u+T7)s* (n+p— 'r))

where Wy(t) is a symmetric window that is nonzero in the range te[—N/2, N/2],
and Wy(t) is a rectangular window that is nonzero in the range te[—M/2, M/2],
effectively reducing the limits on the sums.

2.3.2 Test signal and basis for comparison

The test signal is a simulated reflection from a set of seven point targets received
by the amplitude-steered array operated in pulse-echo mode. The point targets are
located at (6°, 4.0 m), (9°, 4.01 m), (12°, 4.02 m), (15°, 4.03 m), (18°, 4.04 m), (21°,
4.05 m), and (24°, 4.06 m), where the first coordinate is the angular position and
the second coordinate is the range. The transmitted signal is a linear-FM chirp with
frequency sweeping from 1.2 MHz to 5.6 MHz. The amplitude-steered array steers
the 5.6 MHz signal to 5°. The length of the array is 9.76 cm.

The resolution. of different distributions is measured as the -6-dB axial and lateral
widths of each point target because the array is operated in pulse-echo mode. The
highest level of a cross-term is also compared to the maximum target amplitude in the
image. Each distribution is optimized within the limits of the parameters available so
that the highest level of a cross-term is 20 dB below the peak and so that the axial and

lateral resolutions of the point target at 6° are approximately equal and close to 1 cm.
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The criterion for highest level of a cross-term was chosen based on the appearance of
the images. Cross-terms above this level may interfere with the interpretation of the
image. However, lowering cross-terms causes a blurring of auto-terms. In most cases
we do not have the degrees of freedom to control all of these criteria, so subjective
evaluation is used to produce the best image.

The respresentation of the signal on the time-frequency plane using these dis-
tributions will be taken as an image of the targets. Some of the distributions are
not positive definite, which makes their interpretation as images difficult. In the
cases where the distribution has negative values, the absolute value is taken before

logarithmic compression and display of the images.

2.3.3 Results

The spectrogram was calculated using a Hanning window of 590 points or 28.8 us.
In the constant-Q spectrogram, the number of cycles in the window was set to 141.
The Wigner distribution does not offer any parameters to optimize. In the case of the
smoothed pseudo-Wigner distribution, the filters in the time and frequency directions
were Gaussian in shape. They can be defined by the expression ezp(—t3/a? —w?/6?),
where a is 3.4 us and £ is 125.7 x 103 rad/s. For the Choi-Williams distribution, the
rectangular window W), was 256 samples long, Wy was also a rectangular window
513 samples long, and o was 0.75.

Measured lateral and axial widths are presented in Table 2.4. Because of the high
cross-terms for the Wigner distribution, measurements for. targets at 12° to 21° are
made using images with only a single target present at a time. The target at 24°
was not measured because it appeared at the edge of the image. The target at 24°
was not measured for the Choi-Williams distribution because it was not visible in the
image.

The images produced with the spectrogram and constant-Q distributions are
shown in Figures 2.7 and 2.8. As expected, the spectrogram and constant-Q distri-
butions did not have any cross-terms. The constant-Q distribution achieved better
lateral resolution than the spectrogram, although the spectrogram generally produced
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better axial resolution. The constant-Q distribution maintained equal lateral and ax-
ial resolution for each individual target, while the spectrogram produced much better
axial resolution than lateral resolution for the targets at lower frequencies.

The Wigner distribution has no parameters for smoothing, and therefore the level
of the cross-terms could not be reduced. An image formed using the Wigner dis-
tribution is shown in Figure 2.9. In the image, only the targets at 6° and 9° could
be distinguished from the cross-terms. The Wigner distribution is still of interest as
a measure of the achievable resolution. The resolutions presented in the table for
targets at larger angles were measured using signals that contained only one target
at a time.

The smoothed pseudo-Wigner distribution produced the best image of the distri-
butions compared here in terms of combined lateral and axial resolution. The lateral
resolutions were comparable to those of the constant-Q distribution, but the axial
resolutions were smaller, by a factor of 2 in most cases. And the cross-terms were
reduced to an acceptable level. An image is shown in Figure 2.10.

The Choi-Williams distribution was not able to match the performance of the
smoothed pseudo-Wigner distribution. An imag; is shown in Figure 2.11. The Choi-
Williams distribution suffers from the drawback that if two components with the
same frequency are present at different times, or if two components with different
frequencies are present at the same time, the cross-terms are difficult to remove [33].
In our case, the two targets at the lower frequencies overlap enough in time and
frequency that the cross-term between them could only be lowered below 20 dB at
the cost of great loss in resolution. Therefore, some of the cross-terms were allowed
to remain in the image at higher levels. With only one parameter to control time
and frequency smoothing and to control the cross-terms, we were unable to effectively

trade axial resolution for better lateral resolution.

2.3.4 Summary of the time-frequency study

The performances of several time-frequency distributions were compared using
a test signal, which represented a pulse-echo signal from seven point targets. By
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moving from the spectrogram to other time-frequency distributions, we have shifted
from a tradeoff in axial and lateral resolution to a tradeoff in axial resolution, lateral
resolution, and cross-term level. The smoothed pseudo-Wigner distribution gave the
best results, most likely because it had the most available parameters. Cross-terms
were present at low levels. All of the distributions discussed here have kernels that are
independent of the signal. Signal-dependent kernels may give better overall resolution,
and they can be designed to give positive definite distributions while still satisfying
the marginals.

2.4 Conclusions

The operation of the linear amplitude steered array has been described. The beam
pattern has been given, and the use of the array for imaging has been described. A
study of axial and lateral resolution has shown that both are dependent on the length
of the array, and one resolution can be traded for the other by changing the length
of the array. The data processing has also been studied to show that different time-
frequency distributions will produce very different images. The smoothed pseudo-

Wigner distribution gives the best overall resolution with reasonable cross-terms.
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Figure 2.1: Diagram used to define variables for the derivation of the array
field pattern.
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Figure 2.2: Beams from a 9.76-cm aperture steered to 5° at 5.6 MHz.

Beams are shown for 5.6 MHz (5°), 4.5 MHz (6.23°), 3.4 MHz (8.25° ), 2.3
MHz (12.25°), and 1.2 MHz (24°).
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Table 2.1: Steering direction and beamwidth for a 9.76-cm, 452-element array de-
signed to steer to 5° at 5.6 MHz.

frequency Steering Change in Steering | Beamwidth
(MHz) | Direction (deg) | Direction (deg) (deg)
1.2 24.00 - 0.7104
1.5 18.99 5.01 0.5491
1.8 15.73 3.26 0.4496
2.1 13.44 2.29 0.3813
24 11.73 1.71 0.3315
2.7 10.41 1.32 0.2933
3.0 9.36 .05 0.2631
3.3 8.51 0.86 0.2386
3.6 7.79 0.71 0.2184
3.9 7.19 0.60 0.2013
4.2 6.67 0.52 0.1867
4.5 6.23 0.45 0.1741
4.8 5.84 039 | 01631
5.1 5.49 0.34 0.1534
9.4 5.19 0.31 0.1448
33
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Figure 2.3: Lateral and axial resolution for (a) 1-cm-length and (b) 4-cm-
length apertures. The curve shows the steering direction versus frequency.
The error bars indicate the -3 dB beamwidth at each frequency. The verti-
cal lines indicate how bandwidth decreases when array length is increased.
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Figure 2.4: Images formed using simulated reflections from six simulated
targets: (a) 7.5-cm, 374-element array, (b) 9.76-cm, 452-element array,
(c) 15-cm, 694-element array. Time-Frequency processing is accomplished
using the spectrogram with a 50.8-us Hanning window.
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Table 2.2: Axial and lateral resolution measurement results for three array lengths:
7.5 cm, 9.76 cm, and 15 cm. Axial resolution (AR) was measured from images formed
using the spectrogram with an 8.333-us Hanning window. Lateral resolution (LR)
was measured from images formed using the spectrogram with a 0.147-ms Hanning
window.

angle 6 9 12 15 18 21

f (MHz) | 4.669 | 3.120 | 2.347 | 1.886 | 1.579 | 1.362
A (mm) 0.321 | 0.481 | 0.639 | 0.795 | 0.950 | 1.10
LR (deg)
7.5 cm 0.211 { 0.331 | 0.404 | 0.573 | 0.722 | 0.808
9.76 cm 0.174 | 0.254 | 0.316 | 0.440 | 0.539 | 0.613
15cm 0.119 | 0.174 | 0.214 [ 0.289 | 0.342 | 0.421
Af (kHz)
7.5 cm 165 | 110 75 70 60 50
9.76 cm 130 85 60 G153 45 40
15 cm 95 95 40 35 30 20
AR (mm)
7.5 cm 3.845 | 7.690 | 8.972 | 10.25 1.1.54 15.38
9.76 cm | 6.409 | 8.972 | 11.54 | 12.82 | 15.38 | 17.94
15 cm 8.972 | 12.82 | 16.67 | 19.23 | 24.35 | 26.92
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Figure 2.5: Comparison of calculated and measured beamwidths. Mea-
sured values are given for 7.5-cm-length array (x), 9.76-cm-length array
(o), and 15-cm-length array (4). Calculated values are indicated by the
solid lines.
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Figure 2.6: Comparison of calculated and measured axial resolutions.
Measured values are given for 7.5-cm-length array (x), 9.76-cm-length ar-
ray (o), and 15-cm-length array (+). Calculated values are indicated by
the solid lines.
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Table 2.3: Measured and predicted vertical (out-of-plane) resolution for the 452-
element, 9.76-cm-length linear array.

Steering Predicted Measured
Direction (deg) | Resolution (deg) { Resolution (deg)
6 41.8 44
9 59.5 60
12 74.4 76
15 86.8 92
18 96.9 100
21 105.3 110

Figure 2.7: Image produced using the spectrogram. The spectrogram was
calculated with a Hanning window of 590 points or 28.8 us.
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Table 2.4: Axial and lateral resolution measurement results for different distributions.

Lateral Resolution (mm)
angle (deg) 6 9 12 | 15 | 18 | 21 | 24
spectrogram | 11.8 | 19.5 | 30.6 | 45.7 | 66.1 | 81.8 | 102
constant-Q 11.1 | 17.2 | 23.2 | 31.0 | 37.6 | 42.6 | 48.7

Wigner* 11.1 ([ 16.6 | 21.5 [ 28.4 | 34.7 | 385 | -

SPWD 11.6 { 17.1 | 22.9 | 30.9 | 38.9 | 45.8 | 53.9

Choi-Williams | 16.8 | 24.9 | 348 516 |88.9|87.1| -
Axial Resglution (mm)

-

angle (deg) 6 9 12 | 15 | 18 | 21 | 24
spectrogram | 11.2 | 11.2|149|16.8 | 18.7 | 18.7|24.3
constant-Q 11.0 | 18.3 | 23.8 | 29.3 | 34.8 | 40.3 | 45.8
Wigner* 476 | 8.02 | 10.2 | 12.7 | 144 | 17.7| -
SPWD 7.071941{12.2|14.1|16.0 | 19.0 | 214
Choi-Williams | 7.10 | 9.89 | 13.0 { 14.8 | 156 | 206 | -

*Values for Wigner distribution were measured

using images with one target present at a time.
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Figure 2.8: Image produced using the constant-Q spectrogram. The
constant-Q spectrogram was calculated with a Hanning window containing
141 cycles.

Figure 2.9: Image produced using the Wigner distribution. There were
no parameters available for the optimization.
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Figure 2.10: Image produced using the smoothed pseudo-Wigner distribu-
tion. Smoothing in both time and frequency directions was accomplished
using filters with Gaussian shape, @ = 3.4 us and 8 = 125.7 x 10° rad/s.

Figure 2.11: Image produced using the Choi-Williams distribution, o =
0.75.
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CHAPTER 3

TWO-DIMENSIONAL
AMPLITUDE-STEERED ARRAY

The linear amplitude-steered array was discussed in detail in Chapter 2 to intro-
duce issues of array operation, image formation, and resolution. We now extend the
discussion to the implementation of the amplitude-steered array as a two-dimensional
array for fast volumetric imaging.

This chapter first gives an introduction to the operation of the two-dimensional
array, briefly describing the current application. Then the layout of the array is
discussed along with the beam pattern produced. Next the data collection is described
along with its simulation. At this point the achievable resolution of the array can
be compared with the resolutions achieved using different time-frequency processing.

Finally, the image formation algorithms are presented along with resulting images.

3.1 Introduction

We give a brief description of the application and array operation here to provide
a context for the more detailed discussions that follow. The goal is to image a sector
from 3 to 5 m in front of the array, with a resolution voxel of 1 cm. The sector will
be 20°-wide in the vertical direction and 30°-wide in the horizontal direction. The
resolution requirement leads to the choice of 1 to 5 MHz as the desired operating
frequency range. The array is intended to be used within a diver-held sonar camera
for real-time detection and identification of submerged mines. We expect the mines
to be metallic targets suspended in the water or sitting on the soft bottom of the
water body, with total size of apprximately 50 cm and features on the order of 1 cm.
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The major constraint on acoustic volumetric imaging that is addressed by this
array is the slow data acquisition due to the speed of sound in water. The speed of
sound in seawater is approximately 1500 m/s. A pulse requires 6.7 ms to travel 5 m
and return. Because we wish to image to a range of 5 m, we must be able to collect
all the data with a small number of transmit pulses. Using one pulse per scan of the
volume of interest will allow us to have a frame rate of approximately 150 volumes/s.
The time required to process the data will reduce the frame rate.

To image a volume of interest with a single transmit pulse, information must be
contained within the received signal to give vertical, horizontal, and range position
of the target. The range of the target will be obtained from the time elapsed until
the reflected signal is received. The vertical position information will be determined
by the frequency of the returned signal. The horizontal position of the target will be
found by using conventional, linear phased array processing of the signals from the
columns of the array.

To insonify the entire volume of interest with one pulse, a subset of the two-
dimensional array elements will be used as transmit elements. To insonify an en-
tire region with a single transmit pulse, with a conventional array, the transmitter
would have to be small in both the horizontal and vertical directions. For the two-
dimensional amplitude steered array, using a set of elements that is narrow in the
horizontal direction and wide in the vertical direction will give a beam that is wide
in the horizontal direction and narrow in the vertical direction. But in the vertical

direction, the narrow beam will be scanned as the frequency changes.

3.2 Array Design

The two-dimensional array is a matrix of elements. We refer to the vertical
columns of elements as “staves,” and we refer to the horizontal rows of elements
as “rows.” The amplitude steering occurs only in the vertical direction.

The following array designs were developed by colleagues at the Applied Research
Laboratory at the Pennsylvania State University. In this section, we present each of
the designs and discuss the optimality of the final array design.
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3.2.1 Linear array design

The original layout for the two-dimensional amplitude-steered array was based on
the implementation of amplitude weighting for the linear array. Amplitude weight-
ing for the linear array was accomplished, not by scaling the signals from point
sources/receivers, but by dividing up the available area of a single piezoelectric crystal
according to the ratio of the weights, as shown by Figure 3.1. We show how this figure
is derived by first imagining that we could phase a continuous rectangular transducer
to steer its main beam. We use the following equation to determine the phase at each
point on the transducer:

Heamtinuous(8) = [ e7Rezsiniole=ikasin®) gy (3.1)

where 6§ is the angular argument of the beam pattern, kg is the wavenumber at the
design frequency, 6, is the design steering angle, and z is the spatial position along
the transducer. We separate the phase into its real and imaginary parts to obtain

Hemtinanus(8) = [ cos(kuzsinbo)e =5z + j [ sin(kozsin fo)e 0z (3.2)

where the first term of the sum corresponds to the cosine array and the second term
corresponds to the sine array. The weightings, cos(koz sin6p) and sin(koz sinfy), are
the continuous versions of the sampled weightings, cos((2n — 1)¢) and sin((2n—1)¢),
for the array of point sources/receivers of Chapter 2, where ¢ = kodsin6p/2.

Part (a) of Figure 3.1 shows the regions belonging to the cosine and sine arrays for
the continuous transducer. The solid line represents the cosine array, and the dashed
line represents the sine array. The weighting is acheived by changing the shape of
the transducer. In part (b) of Figure 3.1, we show that the two different weightings
must occupy the same space. In Figure 3.1(c) we show that the sharing of space is
achieved by using a cosine weighting and a (sine -+ cosine) function for weighting.

3.2.2 Two-dimensional array design

The original two-dimensional array was essentially a painting of the one-dimensional
array onto the two-dimensional array, as shown in Figure 3.2. The maximum array
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dimensions are 55 by 52 elements. The center-to-center spacing is 2.11 mm, giving
an array that is approximately a circle with a radius of 11 cm. In Figure 3.1, the
frequency separation is in the horizontal direction, and in Figure 3.2, the frequency
separation is in the vertical direction. Although the design is largely based on the lin-
ear implementation, there are some differences which take advantage of the flexibility
of using an array. The sine regions, which had been implemented as a (sine+cosine)
function in the one-dimensional array, include some elements in the center staves of
the array. This modification is necessary because the center two staves will be used
as the transmit array. In order to approximate the beamsteering of the whole array,
the center two staves must include some sine elements.

This array design was unsatisfactory because of the presence of high sidelobes, as
shown in Figure 3.3. The array was designed to steer to 30° at 100 kHz, and it was
to be used for a frequency range of 50 kHz to 400 kHz. Therefore the beam pattern
shown is for 400 kHz, where grating lobes are most likely to occur. The 400-kHz
beam is steered to approximately 7°. Additional major lobes appear at 49.8° in the
vertical direction and £1.59° in the horizontal d.irection, and they are only 12.4 dB

below the main lobe.

3.2.3 Alternating element design

New designs were conceived in an attempt to lower the grating lobes. The next
iteration used increased mixing of the two different types of elements. The linear
array implementation was no longer considered. Instead the design is a more direct
implementation of the concepts from Chapter 2. Now the point sources/receivers of
the linear array will correspond to rows of the two-dimensional amplitude-steered ar-
ray. This correspondence is shown in Figure 3.4. On the left, the figure shows a linear
amplitude-steered array, as discussed in Chapter 2, except that the frequency steer-
ing is now in the vertical direction. Recall from Chapter 2 that the usual electronic
steering has been divided into two sets of weights, one phase-symmetric consisting
of cos((2n — 1)¢) terms, and one phase-antisymmetric consisting of sin((2n — 1)¢)

terms, where ne[—%, %’—] is an index used to enumerate the elements and there are
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an even number of elements in the array. For the two-dimensional array, the weight-
ing is accomplished by selecting the number of elements in each row that are con-
nected together as sine or cosine elements. In this way the phase-symmetric and
phase-antisymmetric arrays share physical space. On the right, we show that each
point source/receiver of the linear array corresponds to a row of the two-dimensional
amplitude-steered array. Each element of the row must be assigned to be a cosine
or sine element so that the proper cos((2n — 1)¢) and sin((2n — 1)¢) weightings are
maintained. As the cos((2n — 1)¢) and sin((2n — 1)¢) terms may represent positive
or negative values, in each row, there are either positive cosine or negative cosine
elements, not both. Also, there are either positive sine or negative sine elements, not

both. The numbers of each type of element in a row were determined by the equations

Ne(n) = ff;: | cos((2n — 1)kod/2sin )| (3.3)
Ns(n) = T2 |sin((2n ~ 1)kod/2sin)] (3.4)

where the weights of Equation (3.2) have been discretized assuming an even number of
rows, where Ng is the number of cosine elements; N is the number of sine elements,
N7** is the maximum number of elements in the n*® row, d is the spacing between
the rows, ko is the design wavenumber, and 68, is the design steering angle. For
our arrays, N'** depends on the row number to account for the circular aperture.
Elements of each row were assigned alternating type, sine or cosine, along the row
until the maximum of one type is reached, i.e., at element 2 * min{ N¢, Ns}. The row
was completed with the remaining elements of the other type.

This design resulted in very high sidelobes. Figures 3.5 and 3.6 show the second
array layout and the resulting beam pattern at 5 MHz, for an array that was designed
to operate between 1 and 5 MHz and steer to 5° at 5§ MHz. The array diameter is 10
cm. The center-to-center spacing of rows is 215.9 um, and the center-to-center spacing
of staves is 254 pm. Grating lobes in the vertical direction resulted from gaps at the
edge of the array where some rows had more elements than others. Grating lobes in
the horizontal direction resulted from the alternating elements. There are multiple

lobes above —15 dB relative to the main lobe. The maximum grating lobes occur
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at —36.2° in the horizontal direction and —51.2° and 37.6° in the vertical direction.
These lobes are only 10.7 dB below the main lobe.

3.2.4 Random array design

The final array design was based on using a random assignment of elements. As
with the alternating element design, a certain number of sine elements and a certain
number of cosine elements are required in each row. The proportion of these elements
is the same as with alternating elements in order to accomplish the beamsteering.
However, the positioning of the elements within the row has been made random.
Each element of the array was given a certain probability of being a cosine element
and a certain probability of being a sine element. The sum of these probabilities
does not equal one for every row. It is also possible for the element to be nulled, or
not used, in order to keep the proper relative weighting between rows. A random
number generator was used to assign element type. In the alternating array design,
null elements all occurred at the edge of the array. In the random array design, these
elements occur anywhere in the row. This array design led to a greatly reduced peak
sidelobe level but an increased average sidelobe level. Figure 3.7 shows the array
layout used for the simulations, and Figure 3.8 shows the beam pattern produced.
There are no large sidelobes; however, the pedestal level is approximately —44 dB.

The optimal beam pattern we are trying to achieve is that of an electronically
steered array of the same size. In the optimal array layout, each element has both
a cosine weight and a sine weight, implemented as an electronic phase. For the
amplitude-steered array, each element contributes either to the cosine or the sine
weighting, but not to both. Therefore, we are essentially designing two sparse arrays,
one cosine and one sine array. These two arrays cannot be designed independently
because each element of the combined array can only have one type.

Patterns of sparse arrays are characterized by grating lobes or sidelobe pedestal
level. According to Steinberg’s work [36], [37], the average sidelobe level of the in-
tensity pattern is approximately N—!, where N is the number of elements in the

array. Steinberg analyzed and compared the peak sidelobe level of sparse arrays,
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designed using random placement of elements and algorithmically aperiodic arrays.
He found that both produced the same mean sidelobe level, but that the variance
of the random arrays was much smaller than that of algorithmically designed arrays,
when all of the algorithmically designed arrays were compared as a group regardless
of design method. The large variance of the nonrandom design methods means that
it is possible to achieve designs where the peak sidelobe level is significantly lower
than that achieved by most designs. The method most likely to produce a better
design than the random design is dynamic programming, where the location of the
first element is chosen at random. Subsequent elements are positioned to produce the
best result, given the previous element positions. For the random arrays, the small
variance indicates that it is difficult to obtain an improvement in the peak sidelobe
level by trial and error design. However, it is also less likely that one iteration will
produce a beam pattern with an inordinately high sidelobe.

The random array design is not necessarily optimal because there may be some
nonrandom design that produces a lower peak sidelobe level. However, the random
array design produced a beam pattern whose mf.in lobe has the same width as the
main lobe of the full array. And the random array has no grating lobes or large
sidelobes. The predicted average sidelobe level is —51.12 dB. The measured average
sidelobe level is —44 dB. The peak sidelobe level is only 2.3 dB above the mean.

The random array may be made even more sparse, in order to reduce the number
of elements that need to be connected. For example, reducing the probabilities that
an element is a sine or cosine element by a factor of 50 (increasing the probability
that an element is not used) reduces the total number of elements that need to be
connected by a factor of 50. The main lobe width does not change, nor does the
steering angle; however, the mean sidelobe level is increased to 34 dB below the main
lobe. An example of an array layout and a cut through the beam pattern at the main
lobe for this very sparse random design are shown in Figures 3.9 and 3.10. A more
sparse design may be desirable when fabrication of large two-dimensional arrays is
difficult.
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3.3 Data Collection and Simulations

Data collection with the random two-dimensional amplitude-steered array will
proceed as follows. In front of the array will be a cylindrical lens with a line focus at
four meters, focusing in the vertical direction. A linear FM chirp pulse is transmitted
from the center two staves. At a given frequency, the transmit beam is wide in the
horizontal direction and narrow in the vertical direction. The beam is steered in the
vertical direction, according to its frequency. The reflected signal is then received by
the whole array. Signals from individual staves are digitized separately and stored for
delay-and-sum beamforming in the horizontal direction.

Data collection with the random two-dimensional amplitude-steered array is sim-
ulated using the Field II program by J. A. Jensen [25], [26]. A block diagram of the
simulations is shown in Figure 3.11. The code which accomplished this simulation is
given in Appendix B. Data collection was simulated in four parts: cosine elements
transmitting, cosine elements receiving; cosine elements transmitting, sine elements
receiving; sine elements transmitting, cosine elements receiving; and sine elements
transmitting, sine elements receiving. If targets Were known to exist only at positive
vertical angles, only one of the four parts was required. The array description, point
target locations, and point target amplitudes were generated by different programs
and stored as Matlab files. Within Field II, the transducer characteristics were de-
fined and focusing delays were input. Then Field II generated the output voltage
signal by first determining the spatial impulse response of the array at the locations
of the targets, and then convolving that response with the transducer excitation and
impulse response.

The Field II program assumes a linear frequency dependence of attenuation, which
is an appropriate assumption for tissue but not for water. In order to include atten-
uation in the simulation, the target strengths were modified according to their range
and vertical position in the field. The targets were generally placed at 4 m, centered
at 0° horizontally.

The target used for these simulations was designed to include some features of a

mine, including representations of bolts and a slanted face. A diagram of the target
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with dimensions is shown in Figure 3.12. The bolts are of a size to test the resolution
limits. We would like to be able to resolve features that are 1 cm in size. The slanted
face is intended to provide information about depth resolution. The original model
of this target was done at the Applied Research Laboratory using AutoCAD. We use
the model by assuming the node positions of AutoCAD are point targets in the Field
IT program. The definition of the bolts required many nodes. Therefore, they are
highly dense targets, more dense than the rest of the target. A diagram of the target
in terms of its point-target representation is shown in Figure 3.13.

Simulating the actual data collection, a linear FM chirp is transmitted by the
center two staves of the array. The reflected signals are received by each of the
elements in a stave, and the sum of the signals from elements in the same stave is
calulated using the appropriate phase shift to simulate a lens focused at four meters
in the vertical direction. The stave signals are stored in a matrix. One direction of
the matrix is time and the other dimension is stave number. Before storing the time
signal from a stave as one column of the matrix, appropriate time delays are added

for focusing in the horizontal direction.

-

3.4 Three-Dimensional Data Set

Forming the complete three-dimensional data set, following the data simulation,
consists of two steps. First, the signals from individual staves must be processed to
give horizontal position information. Second, time-frequency processing is performed
on signals corresponding to each horizontal steering direction to give vertical position

and range information.

3.4.1 Horizontal position information

Once the signals from each stave are received, the raw data are processed to give
horizontal position information. This processing is shown in the block diagram in
Figure 3.14. The focusing delays do not change with steering direction, so they are
applied within the Field II program. Further processing is accomplished separately
in Matlab. Beamsteering is accomplished using the Radon transform. The discrete
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Radon transform sums through a matrix at different angles, resulting in beams steered
several directions [38].

The output from the array, with focusing delays applied, is a two-dimensional
matrix, with stave along one direction, and time along the other. Once the Radon
transform is complete, we have a matrix of one time signal for each horizontal steer-
ing direction. For a complete set of volumetric data, we then apply time-frequency

processing to the time-signal from each horizontal steering direction.

3.4.2 Time-frequency processing

Range and vertical position information are determined using time-frequency pro-
cessing. We implement the spectrogram and the smoothed pseudo-Wigner distribu-
tion (SPWD). The spectrogram is the most likely to be implemented for early arrays.
However, in Chapter 2, the analysis of the linear array using different time-frequency
distributions showed that the SPWD gave the best overall results.

Parameters such as the filter lengths and shapes were determined by forming
images of the model mine target and optimizing those images for visual appearance.
Then a resolution analysis was performed to determine the resolution provided by
the distribution used.

In the case of the spectrogram, the length of the window used for the linear array
in Chapter 2 was not ideal. It was based on forcing the target at 6° to have equal
resolution in the axial and lateral directions. A better image is produced by increasing
the length of the window, so that some of the range resolution is sacrificed for better
vertical resolution for the targets at larger angles. The final window length chosen
was 1024 samples or 50 us.

The parameters previously selected for the smoothed pseudo-Wigner distribution
allowed us to lower cross-terms to almost —30 dB while having better range resolution
than specified. The filters used for smoothing in the time and frequency directions
were Gaussian windows, described by the expression ezp(—t%/a? — w?/f?), where o
is 3.4 ps and B is 125.7 x 10° rad/s.
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3.5 Resolution Analysis

As with the linear array, the image resolution is dependent not only on the size of
the array, but also on the processing used to form the images. First, we describe the
resolution that is achievable by the array, without considering the processing. Then
we will consider the resolution obtained when using the spectrogram or SPWD.

In the range direction, we will call the resolution range resolution, which we pre-
viously called azial resolution. Range resolution will be given in millimeters. It is
dependent on the bandwidth of the received signal, as in the case of the linear array.
What we had previously called lateral resolution is now called vertical resolution. We
will also measure horizontal resolution. Vertical and horizontal resolutions are mea-
sured in degrees. In the vertical direction, the lateral resolution is very much like that
of the linear amplitude-steered array. The resolution will get worse as the vertical
position increases because we have chosen to have the high frequencies steered down-
ward. In the horizontal direction, the resolution is similar to that of an electronically
phased array.

The theoretical description of resolution is cdmplicated by the multiple frequen-
cies and multiple foci in the horizontal direction. For the lowest frequencies used,
the volume of interest is in the far field; therefore, focusing will not be effective.
Horizontal resolution could be estimated by determining the far-field beam spread
of the array. For the highest frequencies, the region of interest is in the near field.
Six different focal regions are used. A theoretical value for horizontal resolution can
be determined at the location of the foci. At other Ioca.tiéns, the diffraction-limited
spreading must be taken into account. In the far field, range resolution is not de-
pendent on range. In the near field, there is some dependence. Vertical resolution
depends on the frequency separation. Resolution is investigated through simulations
because of the many different cases within our volume of interest.

Range resolution is found using the time signal after the Randon transform is
preformed. Envelope detection is performed using the Hilbert transform. Then the
envelope is log compressed and the points 6 dB below the maximum are found. The
time difference between these points is then converted to distance using the speed of
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sound. Vertical resolution is found by first calculating the magnitude-squared of the
FFT of the entire received time signal. Those data are then log compressed and the
frequency values 6 dB below the maximum are found. That frequency information
is then converted to angular information. The —6-dB level is used because the array
is used in pulse-echo mode. Finally, horizontal resolution is found by calculating the
Radon transform for a range of angles around the target’s actual angular position.
This calculation forms part of an image in the horizontal angle/range plane. The
horizontal resolution is then the horizontal size of the point target in the image
measured by —6-dB points.

Resolutions measured from simulated data are given in Appendix C. In general,
horizontal resolution stays fairly constant due to the multiple foci. At very high
frequencies (small steering angles), vertical resolution is better than horizontal reso-
lution at closer ranges, but comparable to horizontal resolution at far ranges, because
there is only one focus in the vertical direction. At low frequencies, vertical resolu-
tion is fairly stable because in the far field focusing does not have any effect. Also
for low frequencies vertical resolution is better than horizontal resolution because of
the transmit-receive combination. The transmit beam pattern is wide in the horizon-
tal direction, but narrow in the vertical direction. The comparison between vertical
and horizontal resolution shows one of the advantages of the amplitude-steered array
over a system that uses a broad transmit and a conventional phased array to receive.
Better resolution in the vertical direction than in the horizontal direction is a result
of having a narrow transmit beam in the vertical direction, for each frequency.

Resolutions are also measured for data following time-frequency processing. In
this case, only range and vertical resolutions are measured. The Radon transform is
calculated for the appropriate steering angle, then two-dimensional images are formed
using either the spectrogram or the SPWD. Resolutions are measured from the image
as the —6-dB range and vertical extent of the pulse spread function. These results
are presented in Appendix D.

Plots showing the comparisons of range and vertical resolutions for the case of no

processing or processing with the spectrogram and SPWD are given in Figure 3.15.
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Part (a) shows the range resolutions for the three cases. The solid line respresents the
results for no processing, and should be the lowest line for all angles. However, the
dotted line, representing the results for the SPWD, dips below the solid line. This
is a result of measurement error. The SPWD can produce resolution very close to
the limit of no processing, but it cannot do better. Part (b) shows the results for the
vertical resolution. Again, the SPWD resolution approaches that of no processing.
For both range and vertical resolution, the spectrogram results are not as good as the
others. For comparsion, in (b), the dash-dotted line shows the horizontal resolution
measured with no processing. It is worse than the resolution in the vertical direction

because the transmit in the horizontal direction is broad.

3.6 Image Display

Using the Radon transform to get horizontal position information and the SPWD
to get range and vertical position information, we form a three-dimensional data set.
The three-dimensional data set is reduced to two dimensions for display. The methods

for this reduction are surface rendering, projectidn images, or slice images.

3.6.1 Surface rendering

One method to reduce the three-dimensional data set to a two-dimensional image
is surface rendering. An image may show the maximum value for a particular direction
if the maximum is above a threshold value. Similarly, the depth location of the
maximum value could be displayed. We feel that this is valuable because the targets
of interest are metallic and so most of the energy reflected will be from the front
surface of the target, not from within the target.

The image produced using either of the above models shows vertical position of
the target versus horizontal position. Range information is lost or displayed as image
brightness. Two-dimensional data for each horizontal steering direction is reduced to
a single row, which can be accomplished in two ways. In the first case, the maximum
return from each vertical direction is shown. In this instance, there is no range

resolution. In the second case, the range of the maximum return is shown for each
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direction, as long as the maximum is above a certain threshold value. The range
resolution is displayed as color in the image, but different reflectivities of targets are
lost.

Examples of these image formation methods are shown in Figures 3.16 and 3.17.
In both cases, the images produced using the spectrogram and SPWD are similar. In
Figure 3.16, which shows the maximum return for each steering direction, the ring of
bolts at the bottom of the target is visible; however, the slant is lost. In Figure 3.17,
which shows the range of the maximum return for each steering direction, the bolts
are noticeable as is the slant, which appears to get darker as it gets farther away.
Dark patches appear within the target as a result of the low and nonuniform point
target density from the model.

3.6.2 Projection and slice images

Projection and slice images are an alternative to surface rendering. Slice images
display a slice through the three-dimensional data set. Projection images integrate
through one direction to display the other two as an image. An image of vertical
versus horizontal position is formed by summing through the range information. An
image of range versus horizontal position is formed by summing through the vertical
position information. And an image of vertical position versus range is formed by
summing through the horizontal information.

Slice images pick a plane from the three-dimensional data set for display. Sam-
ple images using cuts through the data are shown in Figures 3.18, 3.19, and 3.20.
Figure 3.18 shows a horizontal slice for the spectrogram and SPWD processing. The
horizontal slice was made at the frequency 3.98 MHz because the high frequencies
provide the best resolution. The overall shape of the target in the horizontal plane
is visible in the SPWD image, but difficult to discern from the spectrogram image.
Figure 3.19 shows a slice at a particular range, close to the front of the target. The
spectrogram image shows more of the target in the vertical direction because the
range resolution of the spectrogram is not as good as that of the SPWD. Figure 3.20
shows a vertical slice through the target and perpendicular to the array, using the
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array broadside direction. Both the spectrogram and SPWD images clearly show the
outlined shape of the target. The SPWD image is sharper, but with streaking in the
vertical direction. In all of the slice images, data are thrown out rather than losing
resolution in the data that are displayed. Slice images would perhaps be more useful
if combined with a volume rendered image.

Projection images show the same planes as slice images, but with greatly re-
duced processing. One way to form projection images is to begin with the full three-
dimensional volume of data; however, the processing can be simplified. As described
above, forming the three-dimensio