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SIGNAL PROCESSING ISSUES IN REFLECTION TOMOGRAPHY

Nail Cadalli, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 2001
David C. Munson, Jr., Adviser

In this dissertation, three topics in reflection tomography are investigated: synthetic
aperture radar (SAR) imaging of a runway and surroundings from an aircraft approaching
for landing, acoustic imaging of objects buried in soil, and lidar imaging of underwater
objects. Our investigation focuses on signal modeling and processing issues in the above
problems.

The highly squinted geometry of runway imaging necessitates the incorporaticn of
wavefront curvature into the signal model. We investigate the feasibility of using the
wavenumber-domain (w — k) SAR inversion algorithm, which models the actual curva-
ture of the wavefront, for runway imaging. We demonstrate the aberrations that the
algorithm can produce when the squint angle is close to 90°, and show that high-quality
reconstruction is still possible provided that the interpolation is performed accurately
enough, which can be achieved by increasing the temporal sampling rate. We compare
the performance with that of a more general inversion method (GIM) that solves the
measurement equation directly. The performances of both methods are comparable in
the noise-free case. Being inherently robust to noise, GIM produces superior results in
the noisy case. We also present a solution to the left-right ambiguity of runway imaging
using interferometric processing.

In imaging objects buried in soil, we pursue an acoustic approach, with the primary
purpose of detecting and imaging cultural artifacts. We have developed a mathematical
model and associated computer software in order to simulate the signals acquired by the
actual experimental system, and a bistatic SAR-type algorithm for reconstruction. In
the reconstructions from simulated data, objects were detectable, but near-field objects
suffered from shifts and smears. To account for wavefront curvature, we formulated
processing of the simulated data using the 3-D version of the monostatic w — k algorithm.

In lidar imaging of underwater objects, we describe the relation between the airborne
lidar returns and corresponding tomographic projections of an underwater object. Hav-

ing data at various angular orientations with respect to the object, a 3-D tomographic

iii
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reconstruction is obtained. We have developed software to simulate lidar returns at a
photomultiplier tube and a charge coupled device, using the bistatic lidar return equa-
tions. Our simulator can model multiple scattering and absorption for various water
types and system parameters. Our simulated data fits the characteristics of real data
very well. We present our reconstruction results from the simulated and real data, and

comparatively discuss the reconstructions.

iv
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CHAPTER 1

INTRODUCTION

Tomography is the process of imaging of an object from data collected by illuminat-
ing the object from various directions. Tomography has a wide range of applications,
including medical imaging, electron microscopy in microbiology, geophysical exploration,
nondestructive testing, and astronomy, among others [1-12). The fundamental mathe-
matical problem in tomography is image reconstruction from projections, the solution
of which dates back to Radon [13], and amounts to the inversion of the Radon trans-
form [14-23]. A projection is the linear, planar, or curvilinear integral of a property of the
object. In a broader sense, a projection is the information derived from the transmitted
energy when the object is illuminated from a particular angle. The transmission can
be in the form of x-rays, acoustic waves, microwaves, or electromagnetic energy in the
optical band.

In transmission tomography, projections are obtained by measuring the amount of
energy that passes through the object. The measurement is an integral of the attenuation
coefficient or refractive index of the object medium when the measured quantity is the
amplitude or the time of arrival of the received signal, respectively. A best-known example
of this tomographic mechanism is x-ray computerized tomography (CT), which is also
known as computer-aided tomography (CAT). In a CT scanner, a source illuminates the
object to be imaged with a thin beam of x-rays. On the far side of the object, the beam
is measured by an x-ray detector. This measurement gives an integral of the attenuation
coefficient along the line between the source and the detector through the object. Using
a parallel beam of x-rays and an array of detectors on the far side, a projection of the
object’s cross section at that particular angular orientation can be obtained. Having

such projections at various angles around the object, a cross section of the object’s 3-D
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attenuation coefficient can be reconstructed. Reconstruction in the case of fan beam is
also possible (2], [24].

Emission tomography, which can be classified under transmission tomography, pro-
duces images of the emissive properties of radioactive isotopes planted within an object.
Certain chemical compounds containing radioactive nuclei can affix themselves to certain
parts of the human body. Medical emission tomography exploits this fact to determine
the location of the chemical and the associated tissue within the body by detecting the
gamma rays emitted by the decay of the isotopes (or emitted as a result of interaction of
emitted positrons with electrons) [25-28]. Another important technique of transmission
tomography is magnetic resonance imaging (MRI). This technique is an application of
nuclear magnetic resonance (NMR) principle [9,29-31].

When the measurement is a function of the reflected energy instead of the transmitted
energy, the imaging process is called reflection tomography. In reflection tomography, the
measurement is an integral of the reflectivity of the object. Depending on the nature of
the system, the reflectivity depends on acoustic, electromagnetic, or optical scattering
properties of the object (32-38].

In certain imaging scenarios, due to physical constraints, transmission tomography is
not possible, and hence, reflection tomography must be used. For instance, in geophysical
exploration, it may not be possible to place receivers on the far side of the object area
to be imaged. Or, simply, the object to be imaged may not be transparent; it may be
totally opaque. As another example, in ultrasonic imaging, when there are impedance
discontinuities in the tissue, the transmitted signal experiences a large attenuation and it
is very difficult to obtain measurable signals on the far side of the object. Current ultra-
sonic medical imaging systems, therefore, mostly operate with reflected signals. The most
straightforward method of imaging using the reflected signals is the B-mode (brightness-
mode) scanning. In this imaging modality, a short pulse is transmitted into the object,
which is usually a soft tissue. Echos are collected with the same probe acting as a re-
ceiver. The transmitter continually changes direction and scans the object with a narrow
beam. The amplitudes of return signals are displayed as a function of time, or penetration

depth, and illumination direction [9]. The length of the transmitted pulse determines the
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range resolution, and the beam width determines the lateral resolution. Notice that the
mechanism of B-scan imaging is the same as conventional single-antenna radar imaging.
Now consider that the object is illuminated by a wide spherical beam from a single
point transducer that transmits short ultrasound pulses. Then the received signal at time
instant ¢ represents the integral of all reflections at a distance tv from the transducer, with
v being the speed of propagation in the medium. For simplicity, assume that the object is
2-D. Then, the locus of equidistant points of the object from the transducer is a circular
arc. Thus, the received signal at time ¢ is a line integral of the reflectivity along a circular
arc. In addition, the entire received signal as a function of time represents the projection
of the reflectivity along circular arcs. If the object is illuminated by a plane wave instead
of a spherical wave, the locus of equidistant points to the transmitter/receiver will be a
plane. In that case, we have linear projections of the reflectivity instead of projections
along circular arcs. Thus, as in the x-ray CT, obtaining projections at different angular
orientations with respect to the object, a tomographic reconstruction can be obtained.
A prominent example of reflection tomography is synthetic aperture radar (SAR)
imaging [39,40]. With this technique, an antenna is mounted on an aircraft. As the
radar platform moves along a flight path, the radar collects backscattered signals from an
area on the ground from various angular views. The returned signals are then processed
so as to effectively synthesize a large-aperture antenna. In the case of spotlight-mode
SAR, the antenna is steered so as to illuminate the same area on the ground as the
aircraft moves. In strip-mapping SAR, the antenna is fixed so as to sweep out a strip on
the ground (41,42]. In SAR imaging, the recorded signals with respect to time of arrival
represent the integrals of the ground reflectivity over the area illuminated by the radar
beam along concentric circular arcs centered at the location of the radar antenna. If the
ground area to be imaged is far enough, the wave propagation can be assumed to be in
the form of plane waves, and the integrals along the circular arcs can be approximated as
the line integrals along the direction perpendicular to the direction of plane-wave prop-
agation. In that case, the returned radar signal is a projection of the ground reflectivity
along the direction of integration. As the SAR platform moves along the synthetic aper-

ture and illuminates the scene at various angles, enough number of projections can be
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obtained to produce a high-resolution image. Notice that this is the same mechanism of
image formation as in the x-ray CT.

The basic mathematical relation often used in the inversion of the data for tomo-
graphic reconstruction is the famous projection-slice theorem [15-18]. In the case that
the acquired measurement is the projection of a physical property along a line, the 1-D
Fourier transform of the measurement is the slice of the 2-D Fourier transform of the
physical property at the same angular orientation as the projection. In 3-D tomography,
this can be generalized to plane projections as well as linear projections [40]. The re-
construction is still possible in the case of integrals along curvilinear paths [39,43]. For
other reconstruction techniques, the reader is referred to [5,17].

When the size of inhomogeneities in the object is comparable to or smaller than a
wavelength, ray theory, or the geometric propagation, is not adequate for inversion. It is
then necessary to use wave propagation and diffraction-based methods. In that case, the
fundamental relation that replaces the projection-slice theorem is the Fourier diffraction
theorem, which provides frequency components of reflectivity on circular arcs instead of
straight lines. This area of tomography dealing with diffracting waves is called diffraction
tomography [5].

In this dissertation, three topics in reflection tomography are investigated: (1) SAR
imaging of a runway and surroundings from an aircraft approaching for landing, (2)
acoustic imaging of objects buried in soil, and (3) lidar (light detection and ranging)
imaging of underwater objects. The first system uses microwaves, the second system
uses acoustic waves, and the third uses electromagnetic energy in the optical band. These
three seemingly different topics are related to each other in various ways. The first and
second topics involve synthetic aperture imaging. We use 2-D wavenumber-domain SAR
inversion for imaging of runways. We develop a SAR-type reconstruction algorithm for
the acoustic imaging problem where we also formulate the problem as 3-D wavenumber-
domain inversion. Lidar imaging of underwater objects is a direct application of 3-D
reflection tomography. Since SAR itself is a tomographic reconstruction technique, these
three topics are strongly related to each other.

Our investigation focuses on signal modeling and processing issues in the above prob-

lems. In runway imaging, we mainly deal with the issue of wavefront curvature. The
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specific geometry of the problem necessitates the incorporation of wavefront curvature
into the signal model. For this data collection geometry, we investigate the feasibility
of using the wavenumber-domain (w — k) SAR inversion algorithm, which models the
actual curvature of the wavefront, for runway imaging. We compare these results with a
more general SAR inversion method which attempts to solve the measurement equation
directly. In the study of acoustic imaging of buried objects, we develop a signal model for
the acoustic returns. The signal model, which enables us to simulate the returns easily,
does not take into account the wavefront curvature. Consequently, images of near-field
objects suffer from aberrations. We describe how to apply the 3-D w — k algorithm
to the problem in order to model the wavefront curvature accurately. In the work on
lidar imaging of underwater objects, we interpret the lidar returns within a 3-D reflec-
tion tomography framework. We simulate lidar returns using a sophisticated model that
provides analytical expressions for the received signals. We describe a model for simula-
tion of lidar returns at a charge-coupled device (CCD) after presenting the bistatic lidar
return expressions.

Another common point between the above three topics is the following: Data collec-
tion in each of the systems is performed at the extremes of the usual parameter ranges
we would use for a similar problem. In the first topic, for instance, data collection is
performed when the radar looks almost straight ahead, contrary to the usual broadside
data collection. In the second topic, unlike the airborne radar case, there are reflections
from scatterers in the medium between the radar and the objects to be imaged, and the
objects are in the near-field. In the third topic, the range of observation angles is small
compared to the tomographic applications in medical imaging.

In tomography, it is not always possible to collect projection data over a complete
angular range around the object. This is known as the limited-angle or missing cone
problem, since a cone-shaped region (usually, a biconic section) of the frequency domain
is missing [44,45]. Using a reconstruction method that assumes a complete frequency
domain may result in poor reconstructions. Various approaches have been proposed for
the solution of this problem [46-50]. The topics of this dissertation involve a more difficult

version of the missing cone problem. Contrary to the easier case where the missing section
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is a small portion of the data, here, most of the data is missing; the available data in the

frequency domain constitutes a narrow biconic section.

1.1 Overview

In SAR imaging of a runway from an aircraft approaching for landing, the objective is
to determine whether there is any object either on or near the runway that would make
the landing unsafe. Most aircraft carry weather radars. Although the resolution of these
radars is sufficient to detect and localize storm calls, the resolution is not sufficient for
imaging other aircraft or vehicles on or near a runway. We have conducted a study to
see if these radars can be modified to form useful images of a runway and environs from
a landing aircraft.

In runway imaging, the radar looks almost straight ahead, which makes the squint
angle close to 90 degrees. In such a high-squint case, the range of observation angles
is very narrow, and it becomes necessary to take wavefront curvature into account to
obtain higher resolution. Conventional SAR imaging algorithms that rely on a plane-
wave assumption do not provide sufficient accuracy for the highly squinted case.

The popular w — k algorithm successfully incorporates wavefront curvature into the
processing. It has been reported in the literature that for broadside data collection
scenarios the method produces very good results. The algorithm has not been studied
for high squint angles except in runway imaging studies by Choi {51] and Lee [52]. In
these studies, the method has been reformulated by using Hilbert space concepts. Point
target simulations showed spurious targets that could not be explained. It was believed
that the algorithm broke down at high squint angles due to inaccuracies in employed
approximations.

In our work, we show that high-quality reconstruction is still possible for squint an-
gles close to 90° provided that the interpolation is performed accurately enough. We first
perform a careful analysis of the method, especially, of the interpolation step. We show
that the interpolation can be improved by increasing the number of temporal samples,
which in turn increases the overall computational complexity only linearly. We have

implemented the algorithm as a fast and user-friendly, pieces of Matlab and C software,
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which permits us to easily generate simulation results for different target locations, data
collection segments, sampling rates and interpolation schemes. Our simulations demon-
strate that the aberrations which occur when the squint angle is close to 90° can be
eliminated by performing the interpolation more accurately.

The w — k algorithm is not the only method that takes into account wavefront curva-
ture and there is no reason to believe it is the optimal approach for the high squint-angle
case. We therefore compare the performance of the w — k algorithm with a more general
inversion method that solves the measurement equation directly and accurately models
the curvature of the wavefront. Our results show that the performance of the w — k
algorithm is comparable to that of the general inversion method (GIM). In the noisy
case, however, GIM produces superior results since GIM is inherently robust to noise.

The runway imaging problem is subject to left-right ambiguity. This is because radar
imaging relies on the ranging principle, so that a target to the left of the runway appears
in the reconstruction at the same location as a target located symmetrically about the
centerline to the right of the runway. We present our solution of the left-right ambiguity
problem which makes use of a secondary set of data collected in an interferometric manner
by a secondary receiver.

In the study of acoustic imaging of objects buried in soil, our motivating application is
the detection and imaging of cultural artifacts. In this study, we apply synthetic aperture
theory. We have developed a mathematical model and associated computer software
to simulate the signals acquired by an actual experimental system, which consisted of
an array of receiving elements, a circular omnidirectional transmitter, data collection
equipment and a box of sand to bury objects in. We also have developed a SAR-type
reconstruction algorithm for the acoustic scenario with data collected in a bistatic manner
by using a linear array as the receiver. The main differences between the usual (strip-
mapping) SAR scenario and the acoustic scenario are the following: (1) In usual SAR
geometry, distances are large enough to satisfy the assumption of plane-wave or quadratic-
wave propagation. (2) The soil medium is very attenuating. In the usual SAR scenario
the medium between the radar and the scatterers is air, and hence, attenuation due to

the medium is negligible. (3) The usual SAR return is spatially a single signal. In the
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acoustic case, a linear array is used for beamforming to focus the received signals in the
direction of the array.

We modify the conventional correlation-based strip-mapping SAR algorithm for bistatic
acoustic data collection, along with compensation for signal attenuation. The bistatic
SAR-type reconstruction algorithm, however, suffers from shifts and smears for near-
field objects, since the employed assumption of plane-wave propagation is not accurate
enough in the near field. On the other hand, the w —k SAR algorithm, which takes wave-
front curvature into account, can provide more accurate results for near-field objects. We
present our formulation of the image reconstruction problem for the 3-D monostatic w—k
algorithm.

Detection and localization of underwater objects such as mines is an important prob-
lem for safe operation of naval platforms. Airborne lidar systems can transmit laser
beams that can penetrate the air-water interface and optically detect and localize un-
derwater mines. Transmitted optical energy is subject to scattering and absorption in
water, similar to the effects observed in the acoustic imaging scenario above. Parts of
the reflected optical field, can be captured by CCDs and PMTs (photomultiplier tubes).
The CCDs generate images of the scatterers in the illuminated water column, while the
PMT returns provide information about the scene in the range direction. The images
and PMT returns can be analyzed and processed by a trained operator to detect, classify
and locate hazardous objects.

In the study of lidar imaging of underwater objects, we formulate the above detection
and localization problem as a 3-D tomographic reconstruction problem: We describe the
relation between the airborne CCD/PMT returns and corresponding tomographic pro-
jections of an underwater object. Having CCD/PMT data at various angular orientations
with respect to the object, a 3-D tomographic reconstruction can be obtained. We have
developed software to simulate lidar returns in PMT and CCD sensors. Our simulator
can model multiple scattering and absorption for various water types and system pa-
rameters. We also worked with a real data set from a previous study (1998 Competitive
Evaluation Field Test (CEFT), Panama City, FL). Our simulated data fits the charac-
teristics of real data very well. We present our reconstruction results from the simulated

and real data, and comparatively discuss the reconstructions.
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CHAPTER 2

SAR IMAGING OF RUNWAYS

2.1 Introduction

Radar imaging of runways from aircraft approaching for landing is of considerable
interest since radar is capable of imaging in all weather conditions. Most aircraft carry
weather radars. Although the resolution of these radars is sufficient to detect and localize
storm calls, the resolution is not sufficient for imaging other aircraft or vehicles on or near
a runway. This raises the question of synthetic aperture signal processing, to potentially
improve resolution. Synthetic aperture radar (SAR) can produce very high resolution
imagery [39,40,53-56]. In this chapter, we investigate SAR signal processing as a means
of forming useful images of a runway and environs from a landing aircraft.

SAR typically employs approximations of the wavefront. The traditional plane-wave
approximation used in spotlight-mode SAR leads to a model where the demodulated
return signals represent polar spatial-frequency components of the scene. Polar-to-
Cartesian interpolation followed by a 2-D inverse Fourier transform produces the SAR
image. The geometry for runway imaging, which is described in Section 2.2, however,
requires more accurate modeling and processing of the radar return. This is possible by
taking into account the wavefront curvature. The so-called wavenumber-domain methods
(also known as w— k or k-domain algorithms) increase the resolution by modeling the ac-
tual spherical wave [57-63). In [57] and [58], the image formation algorithm is developed
by using seismic migration techniques [64,65]. In [59], the inversion problem is solved by
using a decomposition of the spherical wave into its plane-wave components [66]. The
method also has been formulated using Hilbert-space concepts without requiring any

knowledge of wave propagation [51]. The following description is based on this latter ap-
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proach. The processing has also been formulated by using the Hankel transform instead
of the Fourier transform [62].

The w — k algorithm previously has been suggested for imaging a runway from an
approaching aircraft in order to determine whether there is any object either on or near
the runway that would make the landing unsafe [67]. The Federal Aviation Administra-
tion (FAA) regulations require that an aircraft maintain a distance of 76.2 m (250 ft)
from the center of the runway when it does not have clearance to proceed to the runway.
Objects on the runway, or inside the prohibited region, need not to be imaged with high-
resolution. But they must be visible in the radar image so that the aircraft can abort
landing. On the other hand, objects safely in the clearance region must be imaged with
high resolution so that they are not smeared into the prohibited area in the radar image,
which could cause a false alarm.

The w — k algorithm models the acquired data as spatial frequency components of the
radar reflectivity on a non-Cartesian grid. The frequency components are interpolated
onto a Cartesian grid and a 2-D inverse Fourier transformation is applied in order to
compute the spatial-domain image. Interpolation introduces error in the image recon-
struction. In runway imaging, the radar looks almost straight ahead. At high squint
angles, because of severe geometric distortion of the Fourier data grid, more accurate
interpolation becomes necessary. In the literature, the w — k algorithm is generally dis-
cussed only for broadside or slightly squinted cases where the interpolation is relatively
simple and accurate. At high squint angles, the w — k algorithm shows aberrations. It
has been believed that the algorithm breaks down at high squint angles, due to error
introduced by the Fourier transform approximation of the imaging kernel, in addition to
inaccuracies in the interpolation.

In this chapter, we characterize the aberrations that occur when the squint angle is
close to 90° and show that the performance of the w — k method can be improved by
increasing the accuracy of the interpolation, and that this can be done by increasing the
number of temporal frequency samples of the radar spectrum. The complexity of the
algorithm increases only linearly in the number of temporal samples. There have been
some remarks in the literature about the fact that more accurate interpolation is needed

for the highly squinted case, but the relation of this point to the number of temporal
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samples was not addressed before. Furthermore, we provide an explanation for why the
error due to the Fourier transform decomposition of the imaging kernel has little effect
on the image reconstruction quality.

The w — k algorithm decomposes the imaging kernel using the Fourier basis. Thus, it
may not be the optimal method for the high-squint-angle case. We therefore compare, for
a given level of computational complexity, the performance of the w — k algorithm with
a more general inversion method (GIM). This method is a numerical solution technique
for a certain type of Fredholm integral equation that models our radar returns.

The runway imaging problem is subject to left-right ambiguity. This is because of
the fact that radar imaging relies on the ranging principle, so that the radar can not
differentiate between any two point objects at equal distances to the radar. In runway
imaging, this amounts to imaging a target to the left of the runway on the right. We
propose a solution to the left-right ambiguity problem, which makes use of a secondary
set of data collected in an interferometric manner by a secondary receiver.

This chapter is organized as follows: We first describe the data acquisition scenario.
Then we investigate the feasibility of data collection in terms of required cross-track
resolution, data collection distance (equivalently, data acquisition time) and cross-track
location of a target. Then we review the steps of the w—k algorithm and present our point
target simulation results for the runway imaging scenario. We discuss the feasibility of
using this method, based on simulation results. Then we describe GIM and compare its
effectiveness with the w — k algorithm. Finally, we formulate a solution to the left-right

ambiguity problem in runway imaging and present simulation results using the w — k
algorithm.

2.2 Data Acquisition Model

Figure 2.1 describes the geometry of the data collection in the ground plane. (All
figures appear at the end of chapters.) The radar platform is an aircraft approaching a
runway for landing. The flight path is along the y axis, and the origin of the coordinate
system is at the midpoint of the synthetic aperture. The runway lies along the y axis
straight ahead of the aircraft. The elevation of the aircraft in the z direction is omitted

11
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but the generalization of the data model to slant-range geometry is straightforward. If
we wished to include the elevation in the data model, we could perform the processing in
the slant plane and project the data onto the ground plane, which may be accomplished
in the Fourier domain as well. However, since the elevation-angle of approach of the
aircraft for landing can be as small as 3°, the slant plane and ground plane data are
almost the same in the current situation.

The radar collects data along its flight path from y = —521 toy = %ﬂ where L,
is the synthetic aperture length. The squint angle v, of the scene center (X, Yo) with
respect to the origin of the coordinate system, is given by arctan(Yy/Xo). The observation
angle v’ corresponding to an arbitrary point (2, y’) in the scene with respect to the radar
platform is given by arctan((y’ —y)/z’'). The radar beam illuminates a spotlight patch on
the ground. At high squint angles close to 90° and with an elevation-angle of approach of
3°, the ground patch is a long ellipse with the longer axis along the along-track direction.
For example, if the runway is 3200 m ahead, the antenna size is 1 m and the radar
frequency is 10 GHz, then the scene is an ellipse with the longer axis being about 3600
m, whereas the shorter axis is 192 m. The area to be imaged, which is called the scene,
is a smaller subarea of the ground patch and has size L, by L,. The shape of the scene
area can be taken as a rectangle, an ellipse, or a circle within the area illuminated by the
mainlobe of the radar beam by digital spotlighting. Different parts of the runway, that
is, different scenes, can be imaged simultaneously.

In a data collection session, the radar transmits a pulse and collects the return at
regular spatial intervals along its flight path. The transmitted signal is a real passband
signal Re {sr(t)} where s,(t) is a linear FM (chirp) waveform given as

ej(uo¢+ot2) ‘tl < I2g

sr(t) = p(t) exp (jwot) = (21)

0 otherwise

where f, is the center frequency of the chirp signal, wg = 27 fo, and 2a is the chirp
rate in radians per second squared. The temporal variable t is called fast time in radar

terminology. The instantaneous frequency of the chirp is given by
£o(8) = 5=(wo + 20) (22)
o(t) = 5-(wo + 20t) . .

12
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The corresponding range of temporal frequencies extend from w, — a7, to wo, +at,. Thus,

the temporal bandwidth of the transmitted waveform is

1 QaT,
BT b §20Tp = ?p . (2.3)

Let the range function be given by

r(c’ y—y) = ?+ (y-v)? (2.4)

when the radar is at location y on the flight path and the coordinates of a particular
scatterer are given by (z’,y’). As shorthand notation we will denote the range function
by r,, which indicates the dependence of the range function on the primed coordinates
(/,y') and the location y of the radar. Depending on the location of the scatterer and
the position of the radar on the flight path, r, takes values in [Tmins Tmaz)-

The complex reflectivity function of the scene is denoted by g(z,y) which can also be

written as

9(z.y) = lg(z, y)| exp (j¥(z,y)) (2.5)

in terms of its magnitude and phase. Due to the finite antenna footprint, g(z,y) is not
recoverable outside the antenna footprint. Insofar as the scene area is uniformly illumi-
nated by the mainlobe of the antenna beam, the antenna gain actually can be assumed
to be incorporated in g(z,y). For a more general formulation, one should use a window
function w(z’,y’,y) to model the spotlight-mode antenna pattern separately. Since, in
the spotlight mode, the antenna is steered to continuously point to the same scene area on
the ground as the radar platform moves along the flight path, the magnitude of w(z’, v/, y)
for each point (z’,¥’) in the scene depends on the observation angle a.rcta.n(l;:,“). For
the subsequent formulation, we assume that the scene area is inside the area illuminated
by the mainlobe of the radar beam, and hence almost uniformly illuminated. In other
words, the antenna pattern w(z’,y’,y) can be assumed to be unity within the scene area.
Notice that we assume that the reflectivity function is not dependent on the frequency of
the radiation or the observation angle. This is justifiable as long as the radar is narrow-

band and the range of observation angles is small. Most targets do have frequency- and
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direction-dependent reflectivity. Therefore, for wideband and wide-angle radars, which
are mainly used to see through foliage, it is necessary to incorporate those dependencies
into the reflectivity model. There are some studies for ultra wideband, wide-angle radars
in that direction [68-70]. In the runway imaging case, however, the range of observation
angles is small. Furthermore, the radar uses narrow-band pulses. Hence a reflectivity
model with two arguments instead of four is adequate.

The return signal from a scene with reflectivity g(z,y) is the collection of returns
from all infinitesimal scatterers in the scene. The return signal in real passband form can

be written as

sa(t1) = ] 10 Re fote = 22) exp (it = 22) + wiz'v)) | asay’

(2.6)

This is the data obtained when the radar is at location y.

2.2.1 Issue of wavefront curvature

The plane-wave approximation, which is usually employed in SAR inversion, is jus-
tified if the nonplanar wavefront can be approximated closely enough with a planar
wavefront. This is possible when the scene is in the far field, in which case the range
error between the actual wavefront curvature and assumed planar wavefront is small. In
the near field, icwever, the range error is not tolerable. Range error causes degradation
in the reconstruction in the form of shifts and smears in target images.

The runway imaging scenario has a geometry that is seemingly consistent with the
far field, but the highly squinted geometry makes it necessary to incorporate wavefront
curvature into the processing. In the electromagnetic theory of scattering, the extent of
the near field is given by 2D?/), where D is the maximum dimension of the antenna [71].
For typical radar parameters, this limit is very small compared to the typical range values
for runway imaging; hence, runway imaging can be considered to be in the far field in that

sense. However, since the range of observation angles in this highly squinted geometry is
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small compared to that in the broadside far-field data collection, it is difficult to achieve
high resolution with conventional SAR inversion based on a plane-wave assumption.
The effects of the plane-wave approximation in the polar-format algorithm, which
assumes plane-wave propagation, has been studied with point targets for both broadside
and squint geometries [40,72]. For typical parameters in runway imaging, the effects of the
plane-wave assumption appear as severe shifts and smears of imaged targets, especially
for targets close to the runway center. Furthermore, for the plane-wave approximation to
hold, there are certain constraints on the size of the scene area that can be imaged with
reasonable resolution [39,40]. In runway imaging these constraints are more restrictive
than in the broadside case. It is therefore necessary to incorporate wavefront curvature
into the processing for runway imaging. The w — k algorithm performs this incorporation
by modeling the actual spherical wavefront. For broadside and slightly squinted data
collection, considerable improvement has been reported [57-59], through use of the w — k

algorithm.

2.2.2 Feasibility of data acquisition

Resolution in the cross-track direction for the highly squinted case, provided by the
w — k algorithm, is later derived as (2.48). For a target at location (z’,y’) with respect

to the radar platform, the cross-track resolution is given by

5 = cw
* Wmazx COS('Y’min) — Wmin COS(W,maz)

(2.7)

where v',,,;, and v, are the minimum and maximum observation angles to the target.
Maximum and minimum observation angles correspond to the beginning and end of the
synthetic aperture, respectively. These extreme angles can be represented in terms of the

location of the target and the radar platform as

c0s(¥ min) = z

e VI + (' — La/2)?

' = z . 2.8
ool = o T L 0
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Inserting these expressions into the cross-track resolution expression given in (2.7), we
obtain the resolution in terms of the location of the target, (z’,7’), the extreme points
of the temporal bandwidth of the radar signal, Wwmin, Wmaz, and the synthetic aperture
length, L,. If the speed of the radar platform is known, the resolution can also be
expressed in terms of total data collection time [67]. However, since the speed of radar
platforms may vary and since the speed may not be constant throughout the aircraft’s
travel along the synthetic aperture, we find it more useful to express the relations in
terms of the synthetic aperture length.

The cross-track resolution depends on the range of observation angles through which
a target is illuminated by the radar beam. This has the following consequences:

(1) The resolution values for targets at different locations in the scene are different.
Targets far from the runway, that is, the y axis, can be reconstructed with higher resolu-
tion since the range of observation angles would be larger for them compared to targets
closer to the runway. In that sense, a target right on the runway has zero cross-track
resolution! since the range of observation angles is zero for that target. The location of
the target in the along-track dimension also affects the range of angles through which it
is observed. If two targets have the same cross-track coordinate, but one is closer to the
radar in the along-track dimension, the closer target will be reconstructed with higher
resolution. This is illustrated in a contour mesh graph in Figure 2.2 where the cross-track
resolution 4, is computed and plotted for each point in the scene area.

(2) When the radar is very far away from the scene, there is not a large change
in the observation angles as the radar travels along the synthetic aperture. The radar
illuminates the target at about the same angle all along the aperture. However, if the
radar platform is at a moderate distance to the scene, acceptable cross-track resolution
values can be obtained. The range of “moderate” distance values can be computed easily
from the resolution formula. For example, for a target at cross-track location ' = 60 m
and with a radar bandwidth of 32 MHz centered about 10 GHz and synthetic aperture

length of 500 m, we plot the achievable resolution versus the scene distance in Figure 2.3.

"1 Resolution is used to mean either resolution as a general concept or the minimum distance at which
two targets can be resolved. Resolution distance would be a less ambiguous name for the latter. Here
the resolution distance is infinite (ignoring limits placed by the antenna beam width), and the resolution
is zero.
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At a couple of kilometers from the scene, we achieve very useful resolution values. Data
acquisition much closer to the scene produces better resolution. However, in the landing
approach, the pilot needs a margin to decide and safely maneuver to abort the landing
in case of emergency. This safety distance can be calculated by using the recommended
speed and altitude profile of the aircraft during landing and considering the required
time to perform such maneuvers. A typical landing speed for an aircraft is 65 m/s, which
would result in 30 s for decision and approximately a 2 km distance from the runway.
From the cross-track resolution formula resulting from (2.7) and (2.8), we can compute
the cross-track resolution for different synthetic aperture lengths as a function of cross-
track position. Figure 2.4 shows results of such a computation. In the plot, the solid
curves are for the along-track location of the target ¥’ = 3200 m and dashed curves are for
y' = 1600 m. Both sets of curves, from top to bottom, are for synthetic aperture lengths
500 m, 1300 m, and 2100 m. Conversely, given a desired resolution and the location
of the target, the required synthetic aperture length can be calculated as displayed in
Figure 2.5, where the solid curves are for the along-track location of the target y’ = 3200
m, and dashed curves are for ¥’ = 1600 m. In both sets of curves, from top to bottom,

resolutions are 3 m, 8 m, and 13 m.

2.3 Wavenumber-Domain Processing

Let R, be the distance from the origin of the coordinate system to the center (X, Yo)
of the target scene. Let 7, = %‘1 Also define the temporal frequency w = w, +2a(t — 7).
The wavenumber is given by k = w/c. If the transmitted signal is a linear FM pulse
as given in (2.1), then by deramping, that is, by passing the return signal through a
quadrature demodulator at an oscillation phase of w,(t — 7,) + a(t — 75), we obtain, after
some algebraic manipulations (see Appendix A), the return signal in complex baseband
as

Ada

salt,y) = [[ o(e', v exp (~j2kr}) exp (2K Ro) exp (55 (1) = Ro)?) da'dy’ . (29)
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The return is zero outside the interval t € [tmin, tmaz) = [~ 2 + 2Tmin, 2 + 2rimas) due
to the finite-time pulse p(t). Hence, w € [wo + 2a(tmin — To), Wo + 20(tmez — To)]. Hence,
bandwidth of the received signal is

a 2
B = p (Tp + E(Tm - T,,,,‘,,)) , (2.10)

which is almost equal to the bandwidth By of the transmitted signal since the second
term in parentheses is much smaller with respect to the duration of the transmitted pulse.

A point to notice about the data model is that an amplitude function to account
for the spherical spreading of the electromagnetic waves has not been included. As
the emitted spherical wave travels the round trip distance 2r, between the radar and a
particular reflector, its amplitude is attenuated by 1/ (r;)2. Since r, is proportional to
fast time ¢, the attenuation can be compensated by multiplying sg(t,y) by 2. Since the
transmitted pulse is not an impulse, this correction, however, is only approximate.

The second exponential in (2.9) is known and the third exponential term can be
corrected afterwards or can be totally omitted if the time-bandwidth product of the
radar signal is large enough {39]. Then, letting the imaging kernel be denoted by

f(@',yiw) = exp (—j2kr(z’, y)) (2.11)

and omitting the second and third exponential terms, we can write the return signal as
[e <}

sw ) = [[ 9@ ¥) £y - /i) de'dy’ (2.12)
~00

Such an integration represents nonseparable projection in z and convolution in y and
is a special case of the well-known Fredholm integral equation with a nonseparable ker-
nel [73]. The GIM in [74] provides for an efficient estimation of the solution to this
integral equation. The GIM approach has been formulated for synthetic aperture radar
imaging [75]. Here we first describe the so-called w — k algorithm, which operates in the

wavenumber domain and exploits the synthetic aperture radar principle. We describe
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the GIM SAR inversion method in Section 2.4.1 where we compare its results with those
of the w — k algorithm.

2.3.1 Wavenumber-domain image formation

Denote the 2-D Fourier transform of f(z’,y;w) by F(k., ky;w) which satisfies

i [ Pl ki) 9) did, (2.13)

—0o0

fl@' yw) =
Inserting this into (2.12), we obtain
1 [o o] [o o]
= —— , . 0o oI (k2 +hy(y—y')) ! gt , )
s(w,y) 4”2_[.[ F(k, ,ky,w)—[.[g(z )€ dr'dy’ dkp.dk,, (2.14)
which can be written as
_f et [ ala’ ko) dold’
S(UJ, y) - 41‘.2-.[“[ F(kx'akyaw)ej -[[g(l' 'Y )eJ v dr dy dk;ldky . (2.15)

The second double integral is G(—k,+, ky) where G(k., k,) is the 2-D Fourier transform
of g(z,y). Then we have

s(w,y) = 211? JJ Bk ki) Gk k) dad, (2.16)

An expression for the Fourier transform, F(k.:, k,;w) of the imaging kernel f(z’,y;w) is
derived in Appendix C. We have not found it necessary to evaluate the Fourier transform
for |k,| > 2k in (C.12). That is because the radar receiver only records nonevanescent
waves. Evanescent waves which correspond to waves with wavenumber in the range
|ky| > 2k decay within a distance of a few wavelengths. Although we mathematically
carried along the evanescent component in Appendix C, in reality that part is zero since

the imaging kernel does not produce frequencies in that range. Hence, the 2-D Fourier
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transform of the imaging kernel can be taken to be

2w A, 8(ky + J3k2 — k2) |k,| < 2k
F(ko, ky;w) ~ X W) |kl (2.17)
0 \ky| > 2k

where A, is a complex constant defined in Appendix C. Actually, A, is an approximation
to a slowly varying function of r’. Besides this approximation, the above expression
involves the asymptotic approximation of a Hankel function (see Appendix C). Both of
these approximations become less accurate if the squint angle is close to 90°. However,
these approximations introduce error only in amplitude functions. Error in amplitude
does not affect the reconstruction as much as error in phase. That is why the interpolation
error, which affects the phase of the Fourier domain samples, has a larger effect on image
quality. As a matter of fact, as can be seen in the simulations, the performance of the
w — k algorithm can be improved by using more accurate interpolation, and the errors
due to the approximations involved in the above expression do not seem to affect the
reconstruction.

By using the approximation in (2.17) we obtain

2k
s(w,y) = % / G(\/4k? — k2, k,)e/*s¥ dk, . (2.18)
~2k

Since recorded waves satisfy k, < 2k, the limits of the integral in (2.18) can be extended

to infinity, which yields an inverse Fourier transform integral. Hence,

S(w, ky) = A;G(\/4k% — k2, k) (2.19)

where S(w, ky) is the 1-D Fourier transform of s(w,y). Let

ke = \Jak? — k2 . (2.20)

Then (2.19) tells us that the collected data s(w,y) is the 1-D inverse Fourier transform
of AiG(k.,k,) in the variable y. In other words, taking the 1-D Fourier transform of

the collected data s(w,y) in the y dimension, we obtain the 2-D Fourier transform of
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the reflectivity function within a complex constant. Thus, taking the 2-D inverse Fourier
transform of (2.19) we can obtain g(z,y) and display its magnitude as the reconstructed
image. However, as indicated by the relation in (2.20), k; and k, lie on an irregular grid,
the form of which will be examined in a later section. This complicates the problem
because, in order to be able to use a fast Fourier transformation (FFT), the data must
lie on a Cartesian grid. Therefore, as an intermediate step, data on this irregular grid is
interpolated onto a Cartesian grid before a 2-D inverse FFT is applied.

The image formation algorithm is summarized in Figure 2.6. In the first phase multi-
plication, & is the center frequency of the data in the y dimension. This phase multiplica-
tion in the spatial domain causes the k, spectrum of the data to be shifted to baseband.
The second phase multiplication in the wavenumber domain shifts the spatial-domain

data such that the center of the reconstructed image is the scene center.

2.3.2 The Fourier data and its interpolation

The return signal in (2.12) is a sum of complex exponentials (imaging kernel) of the

form

W) = exp (—j2kr(z',y — y')) (2.21)

When considered as a function of y, the instantaneous angular spatial frequency (wavenum-

ber) of this quantity is

b = dd;gjy d ( 2k\/:t'2 ¥) ) (2.22)
(v —v)
2% (2.23)
VIt + (- )
Defining
siny, = W —v) (2.24)

Vot + -y
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we have the wavenumber in the y direction as

ky = 2ksin, (2.25)

where v, is the observation angle of a point scatterer at (z’,y) with respect to the radar

at position y along the flight path. Correspondingly, from the definition in (2.20),
kz = 2kcos7, . (2.26)

As the radar moves along the flight path, and for point scatterers at various locations in
the scene, the angle v, sweeps through the range of values in [Ymin, ¥maz]- The temporal
frequency w is in [Wmin, Wmaz|- Hence, the Fourier data S(w, k) covers the area shown in

Figure 2.7 in the w — k, plane. The wavenumbers k, and k, satisfy,
4k = k2 + k2, (2.27)

which is the equation of a circle with radius 2k in the k; — k, plane. Thus, the Fourier
data lie on arcs that are parts of concentric circles between radial lines determined by the
extremes of the squint angles as shown in Figure 2.8. This is the data to be interpolated
onto a Cartesian grid before inverse Fourier transformation. This data grid is not polar
since the data points do not necessarily lie on radial lines, but rather their locations in
the k; — k, plane are determined by w and &,.

Let us denote equally spaced values of w and k, as vectors @ and &y of size N, and
N,, respectively. (Actually, we have N, x N, samples of the return signal, s(w,y). The
number of discrete locations along the flight path (azimuth) at which the radar sends
probing signals is N,. The number of pixels in the reconstructed image in the along-track
direction is denoted by N,. For easier and faster interpolation we take N, = N,. The
nominal value of N, satisfying the Nyquist sampling requirement is suitable for the image
size as well.) Then for a fixed k, value, say _Ig;, which is the jth component of Ey, we can

write the following by using (2.20):

~¢ 4 ~j
k.;= \/ S@2-Er 0<se<N,-1 (2.28)
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where k., ; denotes the vector of unevenly spaced k. values of size N,,. Notice the depen-
dence of the vector L j on j, and in turn, on Ei This is because the different lc_; values
correspond to different sets of l::t values as can be easily seen in Figure 2 8. Now define
the vector k, of size N, to be the evenly spaced grid of k. values. Then, k, and k define
a Cartesian grid and this corresponds to a matrix @ of size N; x N, which consists of

unevenly spaced w values

©

(k,)? + (E))? (2.29)

@’ =

N

where @" is the component of the matrix @ at the ith row and jth column. Let us define

the matrices Q and g of size N, x N, and N; x Ny, respectively, such that

4]

[
H

Y
i

G(

,k’>
V) G( )

-y

& ) (2.30)

i

e I
il
B

From this notation, it is clear that interpolation maps Q to g We use a Hamming-

windowed sinc kernel h(t, N;) of size N), for the interpolation:

»ij 0 Lij=0
g = P -l]h(ﬁlg @, Ni) otherwise (2:31)
el,;,
where
Lij={¢: 0<€¢<N, -1, ilg‘ - @"| < Np} (2.32)
and
i t
h(t, Ni) = [0.54 + 0.46 cos(nt/Ny)] S“‘g ). (2.33)

Note that the interpolation from Q to g is actually performed in a 1-D manner between w
and @. Having denser samples in @, or larger N,,, makes the interpolation more accurate.
Also notice that as the squint angle increases, the irregularity in Em- increases. Hence, if

the squint angle is large, we require more accurate 1-D interpolation.
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2.3.3 Sampling requirements

The bandwidth of the data in the y dimension is, from (2.25),

2 . .
gy = z (wmaz Sln(7maz) — Wmin Sln(7min)) . (234)
Thus, the sampling interval in the along-track dimension must satisfy

Ay <

(2.35)

r
o,
From (2.19),

S(w, ky) = Ay // g(z',y)e~ W e IVRIK T gt gyt (2.36)

In the processing, we multiply S(w, k) by the phase

exp (jk,Yo + j\/4k2 — k2 Xo) (2.37)

which shifts the center of the resulting image to the center of the scene. Thus, considered

as a function of w, S(w, k,) is a superposition of exponentials of the form

exp (j6(w)) = exp (—j(z' — Xo)\/4k? — k2) . (2.38)

The instantaneous frequency is

_ df(w) d 12 _2( = Xo) —Xo) 2k
v = —— == (~(a' ~ Xo)\/4k? — k}) = o
2 1
= -= (' - Xo) cos(71) (2.39)
Define
o, = max|y,| . (2.40)
The temporal frequency sampling interval must satisfy
Aw< T, (2.41)
Ow
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Notice that the bound for Aw depends on the offset |z’ — Xj| of a target in the scene. The
farther a target is from the center of the scene in the cross-track direction, the smaller
the temporal frequency sampling interval should be. The cosine term indicates that for
a high squint angle, a smaller Aw is necessary. Notice also that the bound given for
Aw is determined by the Nyquist criterion, which holds for evenly spaced samples that
are infinite in extent. However, the interpolation step, which uses a finite set of samples
separated by a distance of Aw, may require a smaller Aw than dictated by (2.41) for

accurate reconstruction.

2.3.4 Resolution

Resolution can be defined as in {39]. In the along-track, that is, the y direction, it is

given as

8, = k2—” (2.42)

Ymaz k!lmin

where

Kymaz = 2222 Sin(Ypmas)
Wmin .
kymin = 2 c SIn(‘Ymin)- (243)

For the high squint angle, sine terms are close to unity. Hence for that case,

CcT

(wma: - wmin) .

o, = (2.44)
From (2.10), the denominator is recognized to be 27 Bg. Since Bp is approximately equal

to Br, we can write
c

2Br

which is the well-known expression for range resolution of a radar. Notice that in the

b, = (2.45)

high-squint-angle case, the along-track direction is the range direction. This expression
indicates that the range resolution is inversely proportional to the bandwidth of the radar

signal.
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Resolution in the cross-track direction is given as

27
61 - kzma:t - kxmin (246)
where
krmar = gmaz c0S(Ymin)
Komin = 29 008(Ymaz) - (2.47)
Thus,
cr

0 =

(Wmaz cos('?'min) = Whnin COS(7maz)) ' (248)

Resolution in the cross-track direction is dependent on the range of observation angles

to the targets swept out as the radar moves along the flight path.

2.3.5 Software for point target imaging

We have implemented the w—k algorithm in MATLAB with a graphical user interface
(GUI) [76]. The part of the program that consumes most of the execution time is the
interpolation. Thus, we implemented that part in C code and incorporated it into the
main routine by using MATLAB’s MEX-files . The GUI is a window called from MAT-
LAB that consists of a number of list boxes, pop-up menus, text entries, and message
boxes. The locations of the point target reflectors and parameters of the program can
be edited, and the program can be run for the specified parameters and targets. When
the program finishes, it displays the reconstructed image. Images can be displayed in a
number of formats, and zooming is also possible.

The main window of the interface is shown in Figure 2.9. In the Targets section of
the main window, the locations and the reflection coefficients of the point targets can
be edited. The list box shows the current target locations (r and y coordinates relative
to the scene center) and reflection coefficients. The values in the text boxes labeled as
x, ¥, and Reflection can be added to the list, or the highlighted entry of the list may
be replaced with these values by using the Add or Update buttons. The Delete button
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removes the highlighted entry from the list. The View button is for producing a plot in
which the locations (relative to the scene center) of the point reflectors are indicated by
asterisks. The Load and Save buttons are intended to be used to load or save a list of
targets from or to a specific file.

In the Parameters section of the main window, there is a list that shows the current
parameters, their values and an explanation for each parameter. When an entry in the
list is clicked and highlighted, the corresponding parameter name and its value appear
in the text boxes, which are located just above the list. Then the value of the parameter
can be changed by editing the value in the text box on the right. When either of the
parameters for the center of the scene (Xo or Yp) are highlighted in the parameter list,
the corresponding squint angle appears in the text box below the list on the right. The
Load and Save buttons are intended for loading or saving the parameters from or to a
file.

When there is an error in the editing process, either in the target or parameter section,
such as not entering a numeral value for a parameter, an error message is displayed in
the message box at the very bottom of the window.

After the targets and the parameters are edited, the algorithm can be run for the
target and parameter values shown in the list boxes by clicking the Run button. When
the processing finishes, the reconstructed image is displayed in a figure window in Color
Image format. It is also possible to obtain a Gray Image or Contour Image by selecting
from the pop-up menu in the bottom right corner of the main window. Selecting the
option Grid, toggles the grid of the plot. Zooming is possible by choosing Zoom from the

pop-up menu and then clicking on the desired area of the image.

2.3.6 Simulation results and discussion

To evaluate the feasibility of the w — k algorithm for runway imaging, we simulated
several example scenarios. In these examples, the temporal center frequency of the radar
signal was 10 GHz and the bandwidth was 32 MHz. The radar traveled L, = 500 m
along track and illuminated a scene area of L, = 120 m by L, = 500 m.
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In Figure 2.10 we see the results of a simulation where targets are at (160, 3100),
(180, 3200), (200, 3300), and (220, 3400); all numbers are in meters. The scene center is
at (200, 3200); hence, the squint angle v, = 86.42°. In Figure 2.10, images of targets are
reconstructed at their correct locations. In Figure 2.11, without changing the positions
of the targets relative to the scene center, we moved the scene center to (60, 3200),
which corresponds to a squint angle of vy, = 88.93°, and the new locations of the targets
are (20,3100), (40, 3200), (60,3300), and (80,3400). As the squint angle approaches
90° for targets nearer the runway center, the targets appear smeared out with energy
smeared toward the center of the scene in the reconstructed image. The dashed line at
T = 76.2 m is the edge of the FAA zone?. For these simulations the number of temporal
samples N, was held constant at 1024. Notice that the condition (2.41) was satisfied
with N, = 1024 for all targets except the target at (20, 3100). To satisfy that condition
we took N, = 1536. The result of the simulation with the increased number of samples
is shown in Figure 2.12. Although the condition (2.41) has been satisfied, there are
still certain aberrations. This suggests that the interpolation is not fine enough. As we
increase N, the interpolation will become more accurate as described in Section 2.3.2.
The computational cost of interpolation increases only linearly with increasing N,. In
Figures 2.13 and 2.14, N, was increased to 3072 and 6400, respectively. There is some
improvement in the reconstruction because of the finer interpolation, but beyond some
point, finer interpolation will not help because the target is located close to the center
of the runway, so that the range of observation angles is very narrow. As an extreme
case, another simulation was performed for a point target at the center of the runway,
with 7, = 90°. We added a point target at (0,3000) to the previous set of targets and
used N, = 6400. The result is shown in Figure 2.15, where it is seen that the new target
is not properly reconstructed; instead its energy is distributed across the cross-track
dimension. This is predicted by the resolution formula in (2.48). We expect a similar
reconstruction for targets that are anywhere near the center of the runway. This is not
a problem for the runway imaging application, however, because targets on or very close

to the runway need not be imaged with high resolution. An indication of their existence

2Recall that FAA regulations require that aircraft and vehicles maintain a distance of 76.2 m (250
ft) from the center of the runway when they do not have clearance to proceed to the runway.
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is sufficient, which occurs in Figure 2.15. On the other hand, targets should not appear
outside the FAA zone if they are actually inside. Our simulations, above, show that with
accurate interpolation this is not a problem. Targets outside the FAA zone should not
appear inside and cause a false alarm, which, of course, is a less hazardous case. From
the simulations, it is seen that targets that are inside the FAA zone but not close to
the runway center are accurately imaged. Objects outside the FAA safety zone will be

imaged with even higher resolution, virtually eliminating the possibility of a false alarm.

2.4 Comparison of the w — k Algorithm with GIM

In this section, we investigate an alternative algorithm that accurately models the
wavefront. This is a general inversion method suggested for the numerical solution of
the Fredholm integral equation of the first kind [74]. We call this particular method
GIM, and present an outline of the method in Appendix E. This method, which was
originally applied to borehole induction measurements, has been formulated for strip-
mapping SAR [75]. By a modification of the kernel, it is also possible to formulate it for
spotlight-mode SAR. Both the w —k algorithm and GIM have been suggested for runway
imaging [67). Here we make an extensive comparison between the performances of the
w — k algorithm and GIM for the runway imaging scenario. The basic motivation behind
our attempt to compare these two algorithms is the following: Even though it seems to
be computationally attractive, the w — k algorithm may not present the optimal solution
to the highly squinted SAR imaging problem. We, therefore, consider using another,
more general, algorithm, namely GIM, that accurately models the wavefront curvature.
The w — k algorithm decomposes the imaging kernel in a Fourier basis, while GIM makes
a similar decomposition in a more general orthogonal basis. This might possibly provide
a more efficient is a better representation of the data. Hence, GIM might be expected to
produce reconstructions with less severe target-location dependent aberrations.

In this study, our objective is to make a comparison between the image reconstruction
performances of the w — k algorithm and GIM for squint angles close to 90 degrees. Since

the performance of the w — k algorithm can be improved by increasing the complexity of
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the interpolation, a fair comparison will allow each method to use the same number of

computations and then compare the resuiting image quality.

2.4.1 GIM processing

The GIM performs a 2-D inversion by exploiting the fact that any finite energy
kernel can be approximated arbitrarily closely by means of a kernel of finite rank where
the approximation is in the metric of the space of square summable complex-valued
functions [77]. In the processing, measurements are first projected onto the subspace
containing the measurement kernel and then the measurement integral is represented
in a multichannel convolution form by a finite rank kernel approximation. Solving the
multichannel convolution problem by a regularized inversion scheme, such as regularized
least squares estimation (78], and back-projecting gives an estimate of the reflectivity
which is the image of the scene. Because of the projection onto the kernel subspace,
this method is inherently robust to additive noise. On the other hand, inversion of the
multichannel convolution, which is an ill-posed problem, requires regularization which,
with all the other operations, increases the amount of computation. But certain parts
of the computation can be performed off-line. The performance of the method depends
primarily on the regularized inversion scheme used for the solution of the muitichannel

deconvolution problem. The method is described in detail in Appendices E and F.

2.4.2 Simulation results and discussion

Here, we compare the reconstruction performance of the two methods under the
condition that the w — k and GIM algorithms use the same number of computations.
Therefore, we first elaborate on the computational cost of the methods. The computa-
tional complexity of the w — k algorithm can be easily calculated from Figure 2.6. We
have N, x N, samples of the return signal, s(w,y). The Cartesian interpolation grid
consists of N; x N, points. In the interpolation step, the number of multiplications is at
most NN, N, where N, is the length of the window used in the interpolation. Thus, the
total number of (complex) multiplications is given by N, N, + N, N,logaN, + N,N, +
N_N,(logaN; + logaN,) + NyN:N,. The various terms are for the first phase multipli-
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cation, 1-D FFT, second phase multiplication, interpolation and 2-D IFFT, respectively.
In GIM, the quantities given by (F.6), (F.8) and (F.13) can be precomputed because of
their dependence only on the transmitted pulse and the data collection geometry. The
computation of the multichannel deconvolution filter can be done off-line as well. Thus,
the required number of (complex) multiplications, once the off-line computations have
been completed, is IN; N, + [(NoI + M)N,loga Ny + M NoI| + MN,N;, corresponding to
(F.7), (F.15) and (F.16), respectively. Here, NN, is the number of spatial samples in the
z direction for the range compressed return signal given in (F.3).

In the following simulations, the temporal center frequency of the radar signal was
10 GHz, and the bandwidth was 32 MHz. The radar traveled 500 m along track and
illuminated a scene area of 120 m by 500 m. Considering the sampling requirements,
we let N, = 128 and N, = 256. After running GIM for a simulation with N; = N, =
128, we obtained I and M values and calculated N, = 6912 which made the number
of computations for both algorithms equal. With that number of temporal frequency
samples, the interpolation step in the w — k algorithm is accurate [79].

Figure 2.16(a) shows the image reconstructed by GIM, where the actual locations of
the simulated point targets are (0, 3000), (20, 3100), (40, 3200), (60, 3300), and (80, 3400);
all numbers are in meters. Notice that the target at (0,3000) is at the center of the
runway. For this simulation there was no measurement noise in the return signal. The
scene center is at (60, 3200), which corresponds to a squint angle of 4, = 88.93°. The
dashed line at z = 76.2 m is the edge of the FAA zone. The corresponding image obtained
by the w—k algorithm is given in Figure 2.16(b). In the w—k reconstruction, the sidelobes
are at least 12 dB below the mainlobe. Those for the GIM reconstruction are at least 13
dB below the mainlobe. The reason for the variety of target positions is that we wished
to investigate the image reconstruction performance as a function of target location,
especially in the cross-track direction. In both of the reconstructions, targets relatively
far away from the center of the runway are reconstructed at their correct locations. For
the target at the center of the runway, the w — k reconstruction has a narrow mainlobe
but it is shifted from its true location. In the GIM reconstruction, the mainlobe peak
is located at £ = 0 but it is much wider; hence, it is not possible to detect the location

accurately. However, in runway imaging, targets on or very close to the runway need
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not be imaged with high resolution. An indication of their existence in the FAA zone is
sufficient, which occurs in Figure 2.16. We notice spreading of the energy of the target
in the cross-track dimension, but this is expected since the range of observation angles
for on-the-runway targets is exceedingly small.

We also performed simulations for the case with measurement noise in the return
signal, assuming additive white Gaussian noise. Notice that for the noisy case, the
Equations (2.12), (F.1), (F.3), (F.9), and (F.12) must be appended with additive noise
terms as in Appendix E. Figure 2.17(a) is a reconstruction by GIM. In this simulation,
the signal-to-noise ratio (SNR) was 30 dB. The weakest reconstructed target image has
sidelobes that are about 9 dB below the mainlobe. The corresponding w—k reconstruction
is not shown since the targets were not identifiable in the image. However, for a less noisy
case of 40 dB SNR, the reconstruction is shown in Figure 2.17(b). The weakest target
has sidelobes that are about 8 dB lower than the mainlobe.

As seen from the above simulations, the w—k algorithm and GIM produce comparable
reconstructions for the noiseless case. Under the constraint that both methods use the
same number of computations, interpolation in the w — k algorithm is accurate enough so
that no aberrations pertaining to the inaccuracies of the interpolation step occur. GIM
is more robust to noise as seen from the simulations, which could be of value in some
scenarios. Recall, however, that for GIM we did not factor in some computations that we
assumed could be performed prior to data collection, off-line. If the geometry for data
collection is not known a priori, then these additional computations must be performed

online, which would greatly add to the complexity of GIM.

2.5 Resolution of the Left-Right Ambiguity

The runway imaging problem requires resolution of the left-right ambiguity. The
reason that such an ambiguity arises is that the radar works on a ranging principle.
Two different point targets at equal distances from the radar and opposite displacements
from the runway centerline will produce exactly the same set of radar return signals and,
therefore, will be mapped to the same location in the image. Since the antenna beam

is not totally zero outside the main beam, or the spotlighting may not be performed
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precisely within the large main beam of the antenna, there may be contributions from
the left side of the runway when the antenna squinted to the right (but looking almost
straight ahead) and vice versa. In that case, objects on the left and right sides of the
runway are together at the same locations in the radar image. Interferometry can be used
to obtain more diverse information about the location of the targets. This amounts to
using another antenna, let us say, antenna B, in addition to the former antenna, which
will be indexed by A. If the antennas are at different distances from the flight path
(centerline), then the radar return will arrive at one of the antennas before the other.
Basically, the phase difference between the two antennas will indicate if the target is on
the left or right. Due to operational considerations, it may be desirable to have antenna
B only receive.

To simplify matters, we assume the main beams of both antennas uniformly illuminate
the same area on the ground. Suppose that antenna B is mounted at a distance Xp from
antenna A in the positive r direction. The radar return is given by (2.12) and reproduced

here for antenna A as follows:
x
salw,y) = // 9(z' ) falz',y —y'iw) dr'dy’ . (2.49)

where the imaging kernel and the radar return for antenna A are denoted by fa(z',y;w)
and ss(w,y), respectively. Similarly, denote the respective quantities for antenna B by
f8(z',y;w) and sg(w,y) where y is the location of the aircraft along its flight path and
(', ') is the location of a reflector in the scene. A similar equation then holds for sg(w, y)

and fg(z’,y;w). The imaging kernels can be written as

fale y—yiw) = eIV

= [eV/e R w—aek [T KT+ o

felz', y—yiw) = (2.50)

We have

V@ = Xp)?2+ (¢ —y)2 = (¥ —v)? + 7 - 20'Xp + X3 (2.51)
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1
X3 -2r'Xp |?
= \ﬂyl _ y)2 + z'? [1 + (___—y,B— y)2 " ;2] (2.52)
1 X2 - QI'XB
~ \/(y/ —y)2+z? [1 + 5 (y___—’B_ T 2,2] (2.53)
2 /
N I S 25 (2.54)

2y -y +e? g -yr+a?

where the approximation is made by discarding the second- and higher-order terms of

the Taylor series, [80],

1 1
\/1+:1:=1+§:1:—%1:2+E1:3+..., lz] < 1. (2.55)

Then,

1 . 2!

—jk X2 jk X

fB(;z:',y—y';w) = 6-1'2"\/1'2+(y’—y)2 e ! 2/ (v -2+’ B e ;—/-(u'-v)z-n'? B (2.56)
—ik 1 X2 ik =z X

= fA(:E’,y - y';w) e ’ ?;/-(u’--u)?i».e'2 B eJ ;;(v'-v)h-z'? B' (257)

For the runway imaging case, we can make the following approximation

ﬂyl —_ y)2 + II2 ~ \/yl2 + I’2 . (2-58)

Inversion of the return data ss(w, y) and sg(w, y) will yield the complex reflectivity func-
tion estimates ga(z,y) and gp(z,y), respectively, where we can replace the wavenumber
k with a constant k. in the case of a narrow-band radar. The approximations employed
above do not affect the quality of the reconstructed image since they are used solely
for interpretation of the side information provided by a second antenna. The conjugate

product of the complex images yields

!

ke 1 X} -—jke—pt===Xp
0, )ap(y) = lg( )t e VR T e Ve (259)

If we assume that the antenna is squinted to the right, the arguments of the complex

images ga(z’,y’) and gg(z’,y') refer to the positive coordinates no matter what the sign
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of ' actually is. (Putting absolute value signs around the z’ arguments on the left-hand
side of the above equation will make them mathematically correct.) This is because in
the reconstruction, all the targets to the left of thc runway appear on the right (with
positive cross-track locations). The first exponential term in (2.59) is already known
given the (z’,y’) coordinates of a pixel in the image. Alternatively, multiplying sg(w,y)
by exp ( j ka %) and processing the resulting data compensates for that term.
In that case, there is no need for approximating k by k.; however, ' and 3’ would then
be approximated by the scene center values Xy and Yp, respectively. Let us denote the

resulting complex image after the compensation as ggr(z’,y’), given by

].‘I

—jkc

XB
gr(@’.y) =lg(’,y)Pe V¥+? (2.60)

The sign of the phase in the exponential is dependent on the sign of =/, which indicates
whether the target is to the left or right of the runway. The phase is positive if the target
is to the left and negative if the target is to the right.

2.5.1 Simulation results and discussion

Figure 2.18 shows the w — k reconstruction of point targets at locations (—40, 3000),
(20. 3100), (40, 3200), (60, 3300), and (80, 3400). Notice that the target at (—40, 3000) is
reconstructed at (40,3000). This image is the magnitude of ga(z’,y’). After processing
the data from antennas A and B according to the method outlined above, we obtain the
phase image shown in Figure 2.19. This corresponds to the phase of (2.60). This image
is median filtered to eliminate outliers due to phase errors or phase wrapping [81-83].
Only the positive phase values are plotted, indicating a target to the left of the runway.
The extension of sidelobes appear in the top portion of the image since the image domain
is periodic with the size of the image due to FFT processing. The result is clearly an
indication of a target to the left of the runway in the along-track dimension y’ = 3000,
but it is not apparent, from this phase image alone, where the target is actually located
in the cross-track dimension. This is because the phase associated with the amplitude of
the complex image does not taper off as the amplitude does in the side lobes and away

from the main lobe. That is why, while there is very small energy smeared throughout the
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cross-track dimension for the target at (—40, 3000) in Figure 2.18, the associated phase
in the corresponding small-energy areas are not small in amplitude. It is, therefore, a
useful idea to use the amplitude image in Figure 2.18 together with the phase image.
The phase image can simply be masked with the amplitude image using pixel-by-pixel
multiplication. This will clearly indicate the location of the targets. A so-formed image
corresponding to the image in Figure 2.19 is shown in Figure 2.20.

To check that the proposed solution of left-right ambiguity works well when the
target is on the right instead of the left, we placed the target at (40,3000) in another
simulation. The phase image after processing is shown in Figure 2.21. Except for a few
localized errors, this almost empty image is what we expected. Those few errors can be
eliminated by using a larger median filter. As a second check of our software, we placed
antennas A and B at the same location, that is, Xg = 0. In that case, we correctly
obtained an all-zero phase image.

To test this procedure when there are two targets at symmetrical locations with
respect to the runway, we placed a target at (40,3000) and another at (—40, 3000). The
resulting processed phase image is shown in Figure 2.22. In comparison with Figure 2.21,
this is clearly an indication of a target on the left side. The difference between this image
and the image in Figure 2.19 is that the positive phase due to the target at (—40, 3000)
has been combined with the negative phase due to the target at (40, 3000).

The above simulations used a second antenna separated by a half meter from the
main antenna. For larger separations, phase unwrapping [40] is necessary. Notice that
as the separation of the antennas increases, the approximations involved in expressing
fB(z',y;w) in terms of f4(z’,y;w) become less accurate. This induces other limitations

on the distance by which the two antennas can be separated.
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Figure 2.1 Geometry of synthetic aperture radar data collection for runway imaging.
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Figure 2.2 Cross-track resolution at each location in the scene. Scene center is at

(60, 3200). The radar bandwidth is 32 MHz centered around 10 GHz. Synthetic aperture
length is 500 m.
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Cross-Track Resolution vs. Scene Distance
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Figure 2.3 Cross-track resolution versus scene distance (along-track location of the scene

center). The radar bandwidth is 32 MHz centered around 10 GHz. Synthetic aperture
length is 500 m.
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Figure 2.4 Plots showing cross-track resolution as a function of cross-track location of
a point target for different synthetic aperture lengths. The along-track location y’ of the
target is 3200 m for the solid curves and 1600 m for the dashed curves. In both sets of
curves, from top to bottom, curves are for synthetic aperture lengths 500 m, 1300 m and
2100 m, respectively. The radar bandwidth is 32 MHz centered around 10 GHz.
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Figure 2.5 Plots showing synthetic aperture length as a function of cross-track location
of a point target for different cross-track resolutions. The along-track location y’ of the
target is 3200 m for the solid curves and 1600 m for the dashed curves. In both sets of
curves, from top to bottom, curves are for resolutions 3 m, 8 m and 13 m, respectively.
The radar bandwidth is 32 MHz centered around 10 GHz.
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Figure 2.6 Block diagram of w — k algorithm.
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Figure 2.8 Fourier data on k; — k, plane.
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Figure 2.16 Image of point targets reconstructed by (a) GIM, and (b) w — k algorithm.
No noise.
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Figure 2.17 Image of point targets reconstructed by (a) GIM for SNR = 30 dB, and
(b) w — k algorithm for SNR = 40 dB.
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Figure 2.19 Positive phase image of (2.60) after median filtering.
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Figure 2.20 Amplitude masked phase image corresponding to the image in Figure 2.19.

d=Q5m

WA

w

-

-]
Y

[

-

8
v

along-track (y-dimension) in meters

Y

100 120

(-]
8-

«© ) ©
cross-track (x-dimension) in meters

Figure 2.21 Positive phase image of (2.60) after median filtering. The test target is at
(40, 3000). No targets on the left of the runway.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o=05m

3450 - < —
Ri °
3400} L . - .‘..
g et f' '
€ s00} - ¢
£
Soal t
2
€ 2ol
3
S50} l
g :
T 3100f
gm- .‘"—J #
_'i‘ g_ ;_'- .. 2 “‘
3000+ %_ i“ "u “!/‘ . .y v
il Tk I 1L
e T S = % 20

80
cross-track (x-dimension) in meters

Figure 2.22 Positive phase image of (2.60) after median filtering. The test targets are
at (40, 3000) and (—40, 3000).

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

ACOUSTIC IMAGING OF OBJECTS BURIED IN
SOIL

3.1 Introduction

Once a cultural or archaeological resource site is identified, it must be assessed in order
to determine its significance and eligibility for the National Registry of Historic Places.
Current methods for this assessment involve scattered small-scale digs at the site, which
are expensive and imprecise. The cost of complete assessments is prohibitive; therefore,
there is an urgent need to significantly reduce the cost of data recovery, especially for the
many sites having lower probabilities of containing significant cultural or archaeological
resources. In this study, we apply synthetic aperture theory to an acoustic system for
high-resolution imaging of buried artifacts. In addition to finding cultural artifacts, a
system designed to image buried objects possibly could be adapted to detect land mines.

An acoustic system has potential advantages over existing imaging modalities. Cur-
rent technologies in seismic exploration and borehole techniques are not designed to meet
the resolution requirements for imaging cultural artifacts or land mines. A study showed
that, using acoustic techniques for subsurface imaging, resolution could be improved from
tens of meters achievable in petroleum and mineral exploration to on the order of 1 m
using geophysical tomography (boreholes) for applications such as finding buried waste
or abandoned mines {84]. However, finding cultural artifacts will require resolution on
the order of 5 cm.

Ground-penetrating radar (GPR) has had some success in identifying underground
structures; however, the success is site specific, depending on the moisture content of the
soil [85]. It has been shown that GPR is effective in dry soil, but that water attenuates
the electromagnetic energy. Conversely, acoustic energy propagates better in a saturated

medium than in dry soil [86]. Thus, an acoustic system would complement a GPR system.
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3.2 Experimental System

A picture of the system is shown in Figure 3.1. This system was designed and con-
structed by Professor William D. O’Brien, Jr., and his students. The soil is contained
in a cubic wooden box of 1.2 m on a side. The box has a false bottom, with only the
top 60 cm filled with soil. The system incorporates a torpedo transducer array from the
Applied Research Laboratory at Pennsylvania State University. The torpedo head, which
contains the receiver array, is suspended above the box by a metal frame that surrounds
the box. The source is to the right of the torpedo head. Sitting on top of the box of
soil is a child’s pool filled with 3 cm depth of water. The water is used to couple the
sound energy between the transducers and the sand since the transducers are designed
for underwater applications. To the right of the frame are two computers which are used
to control the motion of the receiver array along three translational axes and the data
acquisition.

The source transducer is a single element that is well approximated as a point source.
In the torpedo head, a 52-element sonar array serves as the receive array and allows
for beamforming on receive. In future versions of the system, a transmitter array may
be used to provide focusing of the transmit beam to increase the energy coupled into a
localized volume of soil, thereby improving SNR. In a recent study both the transmitter
and the receiver array use focused beams (87].

The receiver array and the corresponding coordinate system are depicted in Figure
3.2. The z axis represents the depth into the soil and the z-y plane represents the soil
surface. The y and z dimensions are called azimuth and range, respectively. The detailed
geometry of the transmitter and the receiver is shown in Figure 3.3. Due to the size of
the torpedo and the source, the smallest possible center-to-center spacing of the source
and receiver array is 33 cm.

The excitation signal is a cosine-weighted pulse of 6 cycles at 6 kHz which is plotted in
Figure 3.4. The choice of center frequency was influenced by the operational requirements
of the acoustic transducers and by resolution considerations. Achievable resolution is

determined in part by the medium. Propagation speed determines the wavelength for a
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given frequency. With a higher frequency, better resolution can be achieved; however,
higher frequencies suffer from large attenuation, resulting in poor SNR.

Signals from the 52 elements were captured individually so that processing could be
done off-line. Received signals were averaged 64 times. A separate transmit pulse was
used for each signal captured, so that at each position of the source and receiver array,
3328 (52 x 64) pulses were transmitted. Before the received signal was digitized, it was
amplified by an in-line linear amplifier with a gain of 330.

Acoustic properties of soil are described by the Biot theory for sound propagation in
a porous medium [88], [89]. The theory predicts the propagation of two compressional
waves and a shear wave in the porous medium. A soil characterization study performed
in the Bioacoustics Research Laboratory measured speed of sound and attenuation of
the fast compressional wave over the range of frequencies, 1-10 kHz, for six soil types as
a function of four soil moistures and two soil compactions using through transmission
methods [90]. The study showed that speed of sound and attenuation for all samples
varied over small ranges, 100-300 m/s and 0.1-1 dB/cm-kHz, respectively.

These results are in general agreement with the results for unconsolidated sand by
Hickey and Sabatier [91]. They measured a phase velocity of 143 m/s for the slow wave
and 240 m/s for the fast wave. The slow wave attenuation was measured to be 3.0 dB/cm
at 1 kHz, and the fast wave attenuation was measured to be 0.87 dB/cm at 1 kHz. In
their experiments, both phase velocity and attenuation of the slow wave increased with

frequency.

3.3 Data Acquisition Model

We have developed a mathematical model and associated computer software to sim-
ulate the signals acquired by the experimental system. Our simulator serves as a con-
venient platform for the development of image reconstruction algorithms. In our model,
the medium (soil) is assumed to consist of densely-spaced point scatterers, which are

placed on a 3-D grid, representing the object(s) and the soil background. Each scatterer
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is assigned a complex reflection coefficient

9(z,y, 2) = |g(z,y, 2)| exp (¥(z, y, 2)) . (3.1)

The magnitude of the reflectivity is Rayleigh distributed and the phase is uniformly
distributed in [—,w) for a soil scatterer [92,93]. Both the magnitude and phase are
deterministic values if there is an object at that point.

In considering the returned signal, let us first deal with the case of one scatterer. The
received response from a particular reflector is a delayed version of the transmitted signal,
scaled by the reflection coefficient of the scatterer and by a factor that is dependent on
the range function and that is due to the attenuation of the medium and the spherical
spreading of the acoustic wave [94]. The transmitted signal is Re {p(t)ej2"f°‘} where p(t)
is a baseband pulse and fj is the carrier frequency.

Receiving element surfaces are considered to be decomposed into a collection of point
receivers. Since the transmitting element is approximately omnidirectional, such a de-
composition is not necessary for that element. For a particular scatterer, the signal
received at a transducer is the sum of the signals received by those point receivers on the
surface of the transducer {95]. This model accounts for the curvature of the wavefront
incident on the transducer and eliminates the need for the knowledge of the receiving
transducer beam pattern. In reference to Figure 3.2, let us denote the coordinates of a
point scatterer by the vector v = (z,y, z). Similarly, we denote the center locations of the
transmitter and the receiver array by v, = (z¢, ¥, 2.) and v, = (z,, ¥, 2,), respectively.
Notice that for the case when the transmitter and the receiver array are in the z-y plane
and move along the y axis, we have v, = (0,y,,0) and v, = (0, y,,0). The signal received
by the ith receiver, when the transmitter is at v, and the center of the receiver array is

at u,, is

; _ " _RQ)
tmn) = [ [l ey, ) Repe - 2

e—BR(A)
" Re(v,, v)R,(v",v)

)é[?ﬂfo(!—ﬂﬁl)-f-a(:,y,z)] }

dz"dy" . (3.2)
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Here v" = (z”,y", 2") is the coordinate of the simple receiver on the surface of the ith
receiver transducer. If the receiver array is in the £ — y plane, 2” = 0. This surface
is represented by the window function w;(2";v,), the location of which depends on the
position of the array center, v,. Vector A = [T u,T "7 er]T is defined for notational
simplicity. The attenuation coefficient of the medium is 3, and ¢ is the speed of sound
in soil. The range function R(A) is the sum of R;(v,,v), which is the distance from
the transmitter to a particular scatterer, and R.(v”,v), which is the distance from the
scatterer to the infinitesimal receiver surface on a particular receiver transducer. R, and

R, are given as

Ri(v,u) = ()2 +(y—w)?+ (2 — 2)?
R(v'\0) = (z—2"2+ -y P+ (z-2). (3.3)

The integrand in (3.2) is a delayed version of the transmitted signal reflected from a
scatterer at u. It is scaled by the magnitude of the reflectivity and phase shifted by
the phase of the reflectivity. The fractional term in the integrand is the attenuation
term. The numerator of this term represents the attenuation due to the medium and the
denominator accounts for the attenuation due to the spherical spreading of the acoustic
wave. The return wave is incident onto a point receiver at the coordinate v”. The limits
of the integration are determined by w;(v”;2,). Hence, the integration is over the surface
of the ith receiver transducer.

After quadrature demodulation, we have the complex baseband representation of the

received signal as

¢-OR@)
stwne) = [ [uldiwoesd g
2t = 28 exp (— ko R(A)) da"dy” (3.4)

where ko = 27 f,/c is the wavenumber corresponding to the center frequency. The term
due to attenuation can be eliminated approximately by using time gain compensation
(TGC) on the received data [9]. The total received signal for the ith transducer of the

receiver array, for a fixed array position, is the sum of responses from all scatterers in
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the medium:

sittw) = [ i Z [ °; 5t v, v, v,) dz dy de. (3.5)

In computer implementation of this model, it is not possible to account for a continuum
of scatterers or a semi-infinite medium. Therefore we assume a finite size, 3-D, discrete

grid of point scatterers in order to simulate objects and the background soil.

3.4 Image Reconstruction

The data acquisition system is translated across the surface of the medium as the
the system emits the tapered sinusoidal pulse and collects returns. We mainly have
explored two methods of forming images from the collected data, namely delay-and-sum
beamforming and a method which basically is an application of synthetic aperture radar
(SAR) processing to the current data collection scenario.

The study concerning the beamforming was carried out by Frazier et al. [96]. The
basic idea of the beamforming is the following: At each position of the data acquisi-
tion system, a single beam can be formed by focusing the array broadside, so that a
conventional B-mode image may be formed with data from multiple positions. Alterna-
tively, since the signals have been recorded separately, several beams can be formed for
each source-receiver array position by synthesizing several elements centered at positions
between the source and the receiver. To synthesize an element between the source and re-
ceiver, the 52 signals are first delayed to simulate a signal transmitted from a synthesized
position and then are delayed to simulate a focused receiver at the synthesized position.
Creating multiple beams at each position of the source and receiver could provide for
some averaging to increase signal-to-noise ratio, although this was not done in our study.
The beamforming has been applied to experimental data obtained from the experiment
set described above. In the images reconstructed by the beamforming, buried objects can
be detected, but the resolution is not at the desired level to identify the objects. For the
full description and results of the beamforming applied to experimental data, see [96].

Given N transducers, a linear receiver array could provide far higher resolution than a
rectangular array if synthetic aperture processing were used. Suppose data were collected

from a linear array moved in a direction normal to its orientation. This corresponds to
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a linear array with its longer dimension being along the z axis, as depicted in Figure
3.5. High resolution in the direction of travel could then be obtained by using algorithms
similar to those employed in synthetic aperture radar (SAR) or synthetic aperture sonar.
High resolution along the dimension of the array would be obtained by using the beam-
forming approach. A difference between subsurface imaging and SAR is that in the
former we have attenuation of the signal due to the medium. We have developed a SAR-
type reconstruction algorithm for the acoustic imaging scenario using a modification of
the correlation algorithm described in Appendix D. The main steps and the necessary
modifications are explained briefly in the following.

By passing the returned signal through a quadrature demodulator, the carrier can be
suppressed, and the complex baseband signal can be obtained for each of the receivers
in the linear array. The linear array then can be focused to a fixed depth, or can be
dynamically focused to various depths by using beamforming. This results in a single
waveform for each location of the data acquisition system. Let us denote the signal

obtained after focusing as

O OO0 R
5(t, ya) / / 9(y, 2)wa(y — ya)w:(z)p(t - ZR')exp(—jko(Rer))dydz.
0 —-oo

(3.6)

where y, is the azimuth coordinate at which the returns are collected by the linear receiver
array. The terms w,(y) and w,(z) are window functions representing the area illuminated
by the transmitted acoustic beam in the azimuth and range directions, respectively. First-

order Taylor series approximations of R, and R;,

R = Jy—w)+22 = z+-(y—2—3")2 (3.7)

(y Ya — d)
— — — 2 72 ~ : —————————————
R, \/ (W—Ya—d)?+22 = 2+ » )

(3.8)

are valid if the conditions z > y — y, and z >> y — y, — d hold. Here, d is the distance
between the transmitter and receiver. We assume that the transmitted signal varies

slowly enough that p(t — &) ~ p(t — Z). Assigning gi(y, 2) = g(y, 2)e™7*0* and
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making the change of variables, y — v,z — £, and t = 2, we can write

3(0r2) = [ 300 €) 01(6) P2z ~ €)) d (39)

—u.)2 — . — d)2
3000, = [ 962 (=) expl—ko 2 exp(—sho 2=y i (310

In the so-called range processing step, the received signal in (3.9) is correlated with the
transmitted signal to find a matched-filter estimate for g)(y,, z). Then this estimate
is used to solve for g)(y., z) by correlating the estimate of g(y,, z) with the filter cor-
responding to the exponential terms in (3.10). This step is called azimuth processing.
With the above formulation, range processing is the same as in the standard correlation-
based SAR algorithm in [42], which is also outlined in Appendix D. But in the standard
algorithm, since it has been derived for a radar scenario, there is only one signal re-
ceived by the single antenna located on the radar platform. Also, for the case of a single
antenna, the transmitter-to-reflector and reflector-to-receiver distances are the same in
the radar case. Notice that the attenuation term in (3.2) is not incorporated in (3.6).
This is because we apply time-gain compensation to the received signal to compensate
approximately for the effect of attenuation.

The above SAR-type algorithm was applied to simulated data consisting of three
point targets and background soil scatterers. A linear array of eight receivers, corre-
sponding to the center of the experimental receiver array, was used. The point targets
were positioned at £ = y = 0 and at depths 0.1 m, 0.4 m, and 0.7 m. The grid for the
background soil scatterers extended from £ = —0.2 m to z = 0.2 m, from y = —0.49
m to y = 0.49 m, and from z = 0.01 m to z = 0.9 m. The resulting image is shown
in Figure 3.6. The reconstructed image represents the y — z plane at a fixed z value
according to our coordinate convention in Figure 3.2. As mentioned, we used time-gain
compensation to nearly eliminate the effect of attenuation. Without the compensation,
only the scatterer at z = 0.1 m could be seen. Note that the point objects are not recon-
structed at their exact locations in depth. This effect is most noticeable for the object
closest to the surface. The reason for this is that our Taylor approximations for the

transmitter-reflector-receiver distances are not valid for close objects. In a SAR scenario,
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these approximations are generally valid because the range distance in radar imaging
is typically very large. Note also that we approximated two distance functions in our
case to take into account the off-center transmitter. If the standard monostatic SAR
algorithm had been applied without that modification, the point target images in Figure
3.6 would have been shifted in the azimuth direction, too. The clouds around the images
of point objects are due to the soil scatterers.

The SAR-type reconstruction algorithm was also applied to real data obtained from
the experimental system. However, the result was not satisfactory; there was much
clutter in the image, although there were bright spots at the locations of the objects. In
a SAR reconstruction, resolution in the range direction increases as the bandwidth of the
transmitted signal increases. Azimuth resolution depends on the distance covered by the
data acquisition system during illumination of a target by the transmitted acoustic beam.
Collecting more data in the azimuth dimension provides for an increase in resolution in
the azimuth direction. In our experimental system, the length of the scan is limited by
the size of the box, which presented a complication to successfully applying SAR-type
imaging. An interesting point about the real data is that most of the information in the
returned signals was in the frequencies below 1500 Hz rather than near 6 kHz, which
was the center frequency of our transmitted pulse. The high received signal strength at
frequencies below 1500 Hz is clearly due to the frequency-dependent attenuation of the
medium. However, in our data model we incorporated the attenuation of the medium
by the parameter 3 only for a single frequency. Compensating the return signals for the
loss due to attenuation is done accordingly for a single frequency.

The system itself could be improved to produce data with better signal-to-noise ratio.
Currently we use a point source and array receiver. The source and receiver were chosen
because of their availability and their ability to transmit high-powered, shaped pulses and
to receive small signals. With a focused source, we could transmit more energy to the
region of interest, rather than spreading the energy over a wide area. A study exploiting
this idea has been published recently [63]. In addition, if we could put the source and
receiver closer together, we could increase the depth of penetration by reducing the total
distance the sound must travel from source to target to receiver at a given depth. Our

source had been designed to give the best performance between 6 kHz and 10 kHz.
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Since the received signal components are at a lower frequency, a source with an optimal

response at 2 kHz or even below will perform better.

3.5 Three-Dimensional w — k Formulation of the Problem

The bistatic SAR-type reconstruction algorithm, which we have developed to recon-
struct images of objects buried in soil, suffer from shifts and smears for objects very close
to the surface, since the employed assumption of plane-wave propagation is not accurate
in the near field. If the transmitter were capable of transmitting linear FM chirp signals,
it would be possible to use the wavenumber-domain (w — k) SAR algorithm to give more
accurate results for near-field sources, since the w—k algorithm takes wavefront curvature
into account [57,59]. The transmitter in the experimental system was designed to trans-
mit shaped sinusoidal pulses and cannot transmit linear FM chirp waveforms efficiently.
However, using a linear FM chirp as the transmitted waveform is an important step in
performing wavenumber-domain processing accurately.

The geometry of the data acquisition scenario for acoustic imaging of buried objects
is depicted in Figure 3.5. A linear array of receivers is used to collect the returns at
different locations along the r axis as the array moves in the y direction. Since the linear
array collects two-dimensional data in the z-y plane from the 3-D volume beneath, the
collected data is suitable for processing by the 3-D version of the w — k algorithm.

Let us assume that the transmitter and the receiver array in Figure 3.5 are concentric;
that is, the offset of the transmitter along the y axis is zero. Also assume that the
transmitted signal is a linear FM chirp pulse given in (2.1). These assumptions enable us
to use the monostatic version of the 3-D w—k algorithm. Our software can easily produce
data according to these settings. The bistatic version of the algorithm employs certain
additional approximations [60], which become less accurate for our near-field problem.
The description of the 3-D monostatic w — k algorithm formulated for acoustic imaging

of buried objects follows.
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The return signal acquired by the receiver element at (z,y), when the array is at

location y, is

o0 00

Sp(t,z,y) = // lg(z', v/, 2') (3.11)

—Q0

O

/

 Re {p(t - 2’;'“) exp (j(wo<

!

2
T:.y) + w(zl’ yl’ ZI)))} dzldyldzl
(3.12)

where 7, is shortened notation for the range function which is defined as

riz-2\y—-y,2) = \/ (z—2')2+ (y—y)2 + 2%, (3.13)

when the receiver is at location (r,y) and the coordinates of a particular scatterer are

(',y,2'). The complex reflectivity function, g(z,y, 2), of the volume is given by

9(z,y,2) = |g(z,y, )| exp (j¥(z,v,2)). (3.14)

Notice that the lower limit of the integration over the z dimension is zero since the
transmitter is assumed to radiate into the soil. Alternatively, we can extend this limit to
—o0, keeping in mind that g(z,y, z) vanishes for negative values of z.

Let us define R, to be the distance from the origin of the coordinate system to the
center (X, Yo, Zo) of the target scene. Also, let 7, = l’gﬂ Notice that unlike the scenario
in Chapter 2, the transmitter here always emits toward broadside, that is, in the z
direction. Since the array is not steered as in the spotlight-mode SAR scenario, the
mode of data collection is the same as in strip-mapping SAR. In this geometry, what
we mean by scene is the common volume irradiated by the transmitter beam pattern
as the array moves along the synthetic aperture. With an omnidirectional transmitter,
the target can be illuminated independent of the size of the receiver aperture. However,
because of the large attenuation of the soil, the return signal will be very small if the
array is far from the target scene in the y direction.

Define the temporal frequency w = w, + 2a(t — 7,). The wavenumber is given by

k = w/c where c is the speed of the acoustic wave in the soil. Deramping (see Appendix
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A) yields the return signal in complex baseband as
sa(t, z,y) = ///g(x',y’, 2)e %o gi%Rogi ey =R gptgrdy. (3.15)
-00
Then, letting the 3-D imaging kernel (see also the 2-D imaging kernel (2.11) ) be denoted

by
f(z,y, 2';w) = exp(—j2kr(z,y,2")) (3.16)

and omitting the second and third exponential terms, we can write the return signal as
[e <]
swzy) = [ 9@ v, 2) fa-2y -y ) deaydy. @)
-0
Let us write the imaging kernel in terms of its 3-D Fourier transform as
1 oC
ey iw) = o5 /// Flkg, ky, kuiw)e®== btk ) gr gk dk.,.. (3.18)

~Q00

Inserting this into the return equation, we obtain

s(w,z,y) = %ﬁg(x’,y', 2') //NF(k,,ky,kz';w)

. elks (=) +hy(y—y)+k,02') dkzdkydkz,dx'dy'dzl, (3 19)

which can be written as
_ 1 T
swz,y) = £ _/i Flka, ky, ki w)ei=el

. ﬂ g(l',, qu zl)ej(—kzz'_kyy'+k,/z') dl"dy'dz' dk:dkydkz'. (3.20)
—00
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The second triple integration amounts to G(k;, ky, —k.’) where G(k, ky, k) is the 3-D

Fourier transform of g(z,y, z). Then we have
1 o0
-— . jkzT o j v
S(w, T, y) = & _/i F(k., ky, ko;w)G(kz, ky, —ko)e*=es* dk dk,dk.,.  (3.21)

Inserting F(kz, ky, k./;w) from Appendix C gives

A, _—
s(w, T,y) ~ m_// Glkz, ky, \J2KE — K2 — K2)eTeeihud dk,dk,. (3.22)
Thus,
S(ws ke, ky) & Ay Glks, by, /252 — K2 — K2) (3.23)

where S(w, kz, k,) is the two-dimensional Fourier transform of s(w, z,y). Let

k.= /42— k2 k2 . (3.24)

Thus, taking the 2-D Fourier transform of the collected data s(w,z,y) in the z and y
dimensions, we obtain the 3-D Fourier transform of the reflectivity function within a
complex constant. Specifically, the 2-D Fourier transform of s(w, z,y) in the latter two
variables gives Ay G(k;, ky, k).

Therefore, taking the 3-D inverse Fourier transform of (3.23), we can obtain g(z, y, z).
However, as indicated by the relation in (3.24), k., k,, and k. lie on an irregular grid.
Therefore, data on this irregular grid must be interpolated onto a Cartesian grid before
a 3-D inverse FFT can be applied. Fortunately, since this is the broadside case (squint
angle is zero), the Fourier data is not subject to severe geometric distortion; hence,

interpolation is easier than in the runway imaging problem.
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Figure 3.1 Experimental system.
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Figure 3.2 Array of transducers and associated coordinate system. Surface of the array
is in the z — y plane. Array motion is in y direction.
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Figure 3.6 SAR-type reconstruction of three point objects from simulated data.
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CHAPTER 4

LIDAR IMAGING OF UNDERWATER OBJECTS

4.1 Introduction

Detection and localization of underwater objects is an important problem, especially
for military purposes. In a prototype system designed by Lockheed-Sanders for the U.S.
Navy, airborne lidar is used to detect, locate, and classify underwater objects, such as
mines. The transmitted laser beam can penetrate the air-water interface and illuminate
scatterers in the water column. The transmitted laser signal experiences scattering and
absorption within the water column illuminated by the laser beam. The returned lidar
signals are received by a photomultiplier tube (PMT) and a charge-coupled device (CCD).
The CCD image and the PMT data provide shape and depth information, respectively,
about objects that are in the illuminated water column. Both receiver outputs can be
analyzed and processed by a trained operator to classify the object and determine its
depth and location.

An improvement to the above method of detection and imaging of underwater ob-
jects might be possible by collecting lidar returns from a specific 3-D volume of water
at various view angles. In this case, 3-D tomographic processing might produce 3-D
reconstructions with possibly better resolution or provide an estimate of the surface cur-
vature of objects. In this study, we formulate the detection and localization problem as
a 3-D tomographic reconstruction problem: We describe the relation between the air-
borne CCD/PMT returns and corresponding tomographic projections of an underwater
object. We describe our development of software to simulate lidar returns in PMT and
CCD sensors. Our simulator can model multiple scattering and absorption for various
water types and system parameters. We perform reconstructions using real data from a

previous study (1998 Competitive Evaluation Field Test (CEFT), Panama City, FL). We
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present our reconstruction results from the simulated and real data, and comparatively

discuss the reconstructions.

4.2 Data Acquisition and Tomographic Interpretation

The data collection scenario is depicted in Figure 4.1. A laser transmitter and a
receiver are mounted externally on an aircraft. The laser emits short, high-energy pulses
of light at a 532-nm wavelength, with a large beam width. The receiver optics is bore-
sighted to the transmitter and uses a filter to admit only the returning laser frequency.
The system continuously scans the field of view over a rectangular search swath by de-
flecting the laser beam. A wide area can be searched in this manner as the aircraft travels
along its flight path. Revisit scans can be performed if the trained operator encounters
a suspicious object in the monitored data. The receiver involves two types of sensors:
a 2 x 2 PMT, and a 64 x 64 element CCD array. The returns are photons backscat-
tered from objects, particles in the water, and the water itself. For each shot (that is,
the process of transmission of a laser pulse and reception of the return) the CCD and
PMT data are stored, together with various other orientation information, such as the
location and altitude of the aircraft and the location of the beam spot on the surface of
the water. The CCD array records 2-D data. If we assume that the line of sight is the z
direction, the output of each element of the CCD array is the the signal at a given z and
y position, integrated over time, that is, over depth, or along the z direction. A minelike
object appears as a bright spot in a CCD image. If the mine is above the integration
depth, it appears as a shadow. Figure 4.2 shows 22 CCD images from CEFT database.
These are images of a mine at different view angles. The mine is 21 ft deep and 1 m
in diameter. These 22 CCD images and corresponding PMT data and parameter values
were extracted from the larger CEFT database by Peter J. Shargo.

The PMT has five channels. The first channel is called the flash channel, and is used
to detect air-water interface. This information is then used to align signals in the other
channels. Each of the remaining four channels collects backscattered energy from the
corresponding quadrant of the water column. The output of the PMT is displayed as
a function of time or, equivalently, depth. As the system scans the field of view, the
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average return profile is formed. An object such as a mine is not transparent to light and
can be highly reflective. Thus, a larger return than the average and a following shadow
appears in the time history of the PMT output when a minelike opaque object is inside
the laser beam. The depth of the object can be found using PMT data. Figure 4.3 shows
the PMT data for the fourth quadrant for the 12th shot from CEFT database. As seen
in the 12th CCD image in Figure 4.2, the target appears as a bright spot in the fourth
quadrant. The point A in Figure 4.3 corresponds to the air-water interface, the bottom is
indicated by point C, and the bump due to the object is marked with B. The amplitude
axis is logarithmic. The PMT samples are recorded every 6 ns. The location of the
bump at point B can be calculated to approximately match the depth of the object. The
resolution in depth depends on the duration of the laser pulse. A 10 ns pulse corresponds
to a 2.25 m spatial extent. Thus, spatial length of the laser pulse is comparable to the
size of the object, resulting in useful, but fairly poor, depth resolution.

The PMT and CCD outputs can be interpreted in a tomographic framework. To-
mography exploits the linear and planar projections of a physical quantity via the use
of projection-slice theorems. Three-dimensional versions of the projection-slice theorem
are given in [18,40].

The PMT output can be considered as the 1-D projection function of the 3-D re-
flectivity of the water column. In other words, the PMT output is the 2-D projection
(conjection, as it is called in [18]) along the z and y directions of the reflectivity, if we
assume that the beam axis is in the z direction. This is depicted in Figure 4.4. Due to the
linear trace version of the projection-slice theorem, the 1-D Fourier transform of the PMT
data (conjection) yields a ray of the 3-D Fourier transform of the reflectivity evaluated
along the line of sight. This is only an approximation though, since the spatial length
of the laser pulse is usually comparable to the size of an underwater mine. However,
for a larger underwater object, such as a submarine, this tomographic interpretation is
accurate.

CCD output can be considered as the 2-D projection function of the 3-D reflectivity
of the water column. In other words, the CCD output is the 1-D projection, along the z
direction, of the reflectivity, if we assume that the beam axis is in the z direction. This

is depicted in Figure 4.5. Using the planar version of the 3-D projection-slice theorem,
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the 2-D Fourier transform of the CCD output is a planar slice, perpendicular to the
projection direction, of the 3-D Fourier transform of the reflectivity. By combining data
from CCD and PMT projections, it is possible to build up a significant volume of the
3-D Fourier transform of the reflectivity of the unknown object.

4.3 Simulation of Lidar Returns

Electromagnetic theory is governed by Maxwell’s equations [97,98]. At optical fre-
quencies, in highly scattering media, coherence degrades sufficiently so that the addition
of electromagnetic fields can be safely replaced by the addition of radiant power or in-
tensity. The theory that describes the propagation of electromagnetic energy in highly
scattering media such as ocean waters is called radiative transport theory,! [99-105]. The
radiative transport equation, which is the counterpart of Maxwell’s equations, can be
derived using the conservation of energy principle. Via small-angle scattering approxi-
mations, the radiative transport equation can be solved by Fourier transform methods.
For oceanic hydrosols, particle dimensions are large compared to the wavelength. Light
scattered by such particles is confined to small angles about the ray axis.

To simulate the lidar returns incident on lidar receivers, we have specifically worked
with the lidar model given in [106-108], which exploits the small-angle scattering ap-
proximation. The model takes into account multiple scattering with time dispersion.
Analytical expressions for the lidar returns, using numerical integration, are given by
using a statistical model for the beam spread function. These expressions have been
reported to be in agreement with multiple-scattering Monte-Carlo simulations and real
lidar data. The lidar equations in [108] are for a monostatic geometry of transmitter and
receiver. We have derived the lidar equations for the more general case of bistatic lidar.
Next, we present the bistatic lidar equations and then show examples of simulated lidar

returns that are computed using these equations.

'In some texts, it is referred to as radiative transfer theory.
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4.3.1 Bistatic lidar equations

Let the source radiance for a laser pulse with energy @, located at the origin and
directed along the z axis, be

L(0,5,5,t) = Q 6(p) 6(3) 4(t) , (4.1)
where the position vector is
F=ir+jy+kz=p+kz (4.2)
and the direction vector is
§ = isinfcos¢+ jsinfsin¢ + kcosh (4.3)
~ §+k. (4.4)

The approximation is due to the small-angle scattering assumption. This dictates the so-
called forward scattering regime where s = |3| < 1 and p <« z. Notice that, temporally,
the pulse is an impulse. To incorporate the pulse shape, we convolve the lidar returns,
which we calculate later in this section, with the pulse shape.

The so-called target plane is parallel to the z-y plane and located at a distance z in

the 2z direction. Radiance after propagating a distance z to the target plane is
L(z,p,5,t)=Q k(z,p,8,7) . (4.5)

The medium beam spread function is denoted by k(z, 5, 3, 7). The multipath time is given
by
T=t-z/c, (4.6)

where c is the speed of light. The multipath time is the time required for a scattered pho-

ton to arrive at the target plane. The medium transfer function is the Fourier transform
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of the beam spread function,

K(z % q,7) = // k(z,5,5,7) exp(j(R-p+q-5)) dp ds. 4.7)

Inversely,

k(z, p,3,7) = (271r)4/---/K(z,R,q, r) exp(~j(R-p+G-3)) dR dj.  (4.8)

Here, k and § are the vectors for spatial and angular frequencies corresponding to g and
§, respectively. The terms dp, d3, di, and dg are the corresponding 2-D differentials.
Limits of the integrals extend from —oo to 0o, consistent with the small-angle scattering
approximation.

The beam spread function can serve as a Green'’s function in the formulation of the
lidar equations, with the introduction of arbitrary position and direction offsets for the

source radiance expression. Then, for a source at g and radiating toward the direction

8’ = § + k, we have

L(O,p‘,§,ﬁ',§"t)=Q6(ﬁ—ﬁ‘) 6(5—5') é(t) (49)

In the target plane at a distance z in the z direction from the source, the radiance is

L(z,p,5,7,5,t) =Q k(z,5,5,7.8,7) (4.10)
Here s’ « 1, that is, the arbitrary radiation direction satisfies the small angle approx-
imation too. Thus, |§'| = 6, that is, the angle between the beam axis and the 2 axis.

Beam axis offset is, therefore, given by g’ + 3. Let r, be the distance from the source

to the beam center in the target plane. We have

r, = \/lﬁ’+z§’|2+z2

= =12
2+ 'ﬁ—%?—‘ : (4.11)
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The time required for a photon to arrive at the target plane is then

t = rofc+T
% L -;fl2 +r (4.12)
or stated in another way ) 7 + 23]
t‘z=7+p2_z;" (4.13)

that is, the time gets extended by the geometric path. We then have

L(z,p,5,p0,5,t) = Qk(z,p,3,p0,5,7)
|7 + 252

~ Qk(z,p—(p+2:8)5-38,7+ 97c

) (4.14)

where the approximation is due to the small-angle scattering assumption in the definition
of 5. We assume that the multipath length is much larger than the geometric path length.

Thus, we can drop the term due to the geometric path length extension and assume

, i+ 25|

z =2 . 1
. 7c +T Jc+T (4.15)

The radiance in the target plane due to a shaped laser beam is
L(zp58=Q [ v() 8 ~(F +28),5-8,1) dff d',  (416)

where the beam spread function k(z, g, 3, 7) is convolved with the aperture function y(p)
that specifies the spatial extent of the source and with the function 6(3) that specifies
the angular radiation pattern of the source. Since
k(z,p—(p'+258),5-3,7)= —2—1? // K(z,%,q,T1) e~ (R(p~F'~23')+4(3-%) 4 dg, (4.17)
Iy

we have

L(z,p,5,t) = / /‘I’(K. O(q§ + k2) K(2,R,q,7) e I(FP+a3) g dq. (4.18)

(2m)*
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Consider a transmitter (laser source) that has position and direction offsets prx and

Srx, respectively. The offset functions are

Yrx(P — Prx) and Orx(5 — Srx) (4.19)
with Fourier transforms

Ury(R)E*PTX and Ory(g)e’™ ™™ (4.20)
Thus, in general, we have

L(z,p,5,t) =
Q
(2m)4

(4.21)

as the radiance at the target plane at a distance z from the origin due to an offset

transmitter.

4.3.1.1 Bottom return

Consider the airborne lidar geometry depicted in Figure 4.6, where TX and RX denote
a transmitter (laser source) and a receiver. The transmitter and the receiver are, in
general, at different locations and directed at different directions. This geometry is often
called bistatic. The geometry where the transmitter and receiver are at the same location
and have the same directional orientation is called monostatic. To handle the bistatic
case, we assign position and direction offsets prx, Sax to the aperture function, ¥ax(4),
and radiation pattern, 8 (3), of the receiver. The altitude of the transmitter and receiver
from the water surface is H.

We first calculate the radiance incident on the bottom of the water column, which
is usually the ocean bottom in mine imaging. Let the bottom be at depth z in Figure
4.6. We incorporate the refraction at the air-water interface. Let m denote the index of

refraction for water, which is, in general, a function of wavelength, temperature, pressure,

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and type of water. However, it can be assumed to be a constant, approximately equal to
“5, since it does not vary much over a large range of parameters relevant to hydrological
optics (104, p.83]. The index of refraction for air is assumed to be unity. Denoting the
speed of light in air by ¢, we have ¢/m as the speed of light in water. We assume that the
atmosphere is dispersionless with transmission coefficient T,;». Transmission coefficient
for the air-water interface is given by To, = ({50 +,")2 This employs the fact that water
does not display any significant magnetic properties, and hence the permeability of water
is close to that of air and free space. Applying Snell’s law at the air-water interface, we
have sinf, = m sinf,. Due to the small-angle assumption, this becomes 6, = m 6,.

Then, the position offset of the transmitter associated with the downwelling path is
ztanfs + Htanf, = z0, + HO, = (: + Hm)6, . (4.22)

Notice that in (4.16), 7 and & denote the offset position and direction in water. Here,
§ stands for the direction offset of the airborne transmitter. Thus, in water this angle
is §'/m due to the refraction. Inserting these expressions in the equation, we have the

transmitted radiance incident on the bottom

Ta mTaw
Lix(H + 2,p,5,t) = Q—t_/ /‘I"rv(" e'rx(Q/m""K'(H'*"/m))
- K(z,R,q,T) IRPTX piG/mtR(H+2/m))d1x o—i(R-P+3) i dj ,

(4.23)
where t = H/c + zm/c + 7. The reflected radiance from the bottom is given by
Lu(H +2,5,5,t) = —/]LN(H+ 2,5,5,t)d3
- Q Tatm Taw R
= (27)? [/ Vrx(R) Orx(R(H + z/m))
- K(z,%,0,7) I® (Prx+(H+z/m)dTx) o—ikb gic dg ,
(4.24)

where R is the bottom reflectance. Notice that the integral over 3 is the irradiance,

which is the sum of the radiance from all directions, associated with a particular point
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on the bottom. To find the radiance presented to the receiver, we assume that each
point on the bottom is a diffuse source. The radiance incident on the receiver is then a
convolution over p and ¢ between the reflected irradiance Ly« and the radiance due to
a diffuse source. For a diffuse source, the radiance in the target plane at a distance z in

the direction § ~ k + § is given by
5.3 1 = = —jR{(p—23) =
L.ﬁ”(Z,Pa S, t) = W-/ K(Z, K, —2K, T) e (p-23) di. (425)

Here, we need to take into account the direction of propagation associated with the
principle of optical reciprocity and the coordinate convention. In the bistatic case, the
propagation direction determines the sign of the phase terms. In the expression for Ly,
§ represents the direction § ~ k + 5, with k being downward. Thus, in the expression for
L,,, we need to use —3. This can be justified by the optical reciprocity principle {104,
106). Hence, for a diffuse source at the bottom radiating upwards (upwelling radiance),

we have at the receiver

Ldz’!!(H + 2, p-s gﬁt) = (271‘_)2 ﬂK(Z, K, —2K, T) e—jk-(fﬂ-(H-n}-z/m).i) dk. (426)

Then, the radiance presented to the receiver at an altitude H from the air-water interface
is
Tatm T

Lnx(P—, 57 t) = m2 awLbnck(H+ z\ﬁ\ §y t) *ﬁ *¢ Ldn/!(H+ 2, ﬁv 51 t)» (4'27)

where the term 1/m? is due to the Snell cone, that is, the solid angle in the water is
1/m? times the solid angle in air. We take into account this effect only in the return path
because the return from the bottom is from a diffuse source. On the other hand, the
downwelling radiance is from a narrow laser beam which certainly is in the Snell cone.
We calculate (4.27) as
- QT . T R 1 _ _ =,
Lax(5,5,t) = [ e ] ¥re® Ore(R(H +2/m)) K(z,7,0,7)

m2m

. e7I%P iR Prx+(Htz/m)irx) (2 R — 2R T — ') e HT/MRS dp dr' (4.28)
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After some manipulation, we have

%ﬁ%ﬁ—/wﬂ“&MW+”w

. g7I%P iR (prx+(Htz/m)irx) g=i(H+:/m%3 (K(7 £ 0,7) *, K(2,R,—2R,T)) dR

Lpx(p,3,t) =

(4.29)

with t = 2H/c + 22m/c + 7. To complete the return, we include receiver field of view

(FOV) Qgx, and receiver aperture area Agy,

Pbouom(t) = Anxan // Lnx(ﬁ, s, t) w,m:(ﬁ) olnx(g) dﬁ d§, (4-30)

where

d";zx (ﬁ) = Yrx (/3 - ﬁnx)
0k (3) = Opx(5—3ax) (4.31)

are the offset functions specifying the spatial extent and angular radiation pattern of the

receiver. We have

Ciottom
Pracon(t) = o252 [ Wex(R) Orx(R(H + 2/m)
e;x(pr\'+(H+z/m)sT¥) (K(-, R, 0 7-) *, K( R, —ZFC,T))
([f nsl@) Gug(s) e @HHImI dp d5) ar,  (432)
where
Crotom = L Anx ux Tam Taw B (4.33)

m2

The last term in parentheses in (4.32) is a Fourier transform integral, which is equal to

W (—R)Opx (—R(H + z/m)). (4.34)
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From (4.31),

Vion(R) = Way(R)eRPR
Ourll) = Bax(@eTH (4.35)

Since ¥, (p) and 6} (3) are real,

Voe(~R) = (Yie(R)’
Oul-2) = (Euxl@)"- (4.36)
Thus, we have
P (®) = 22 [ () @rx(R(H + 3/m) Waa(R) Oie R(H + 3/m)

. ef®PTX—PRX )+(H+z/m)(3Tx ~3rx))

- (K(z2,%,0,7) * K(z,k.—zR,7))dR , (4.37)

with t = 2H/c+ 2zm/c+ 7. Notice that if ¥« (5) and 0« (5) are even, the conjugations
above can be dropped. Notice also that for collinear and boresighted case, prx = pax

and 5rx = 5zx. If we express the bottom return in terms of lidar range ¢, we have

Pri(§) = T2 [ Wea(%) ©r(i(H + D/m)) Wie(R) Ox(R(H + D/m)

. e ‘((Prx —PrX)+(H+D/m)(3TXx ~3RX))

- (K(D,&.0,7) * K(D,R,—Dg,71))dF , (4.38)
where ( = D + 5% with D being the bottom depth. This is valid for ¢ > D.

4.3.1.2 Water return

The lidar return from the water medium itself is calculated similarly as the bottom
return calculation. Consider the water column as a stack of infinitesimally small layers of
water. Then, the backscattered radiance from each interface can be obtained using the

bottom return calculation. In this case, the reflectance coefficient R/7 is replaced with

7
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B(m)dz, and an integration is performed over the lidar range as we keep t = 7 + 2H/c +
2zm/c constant. This accounts for the photons received at a certain time from different
layers of water. The term ((w) is the volume scattering coefficient evaluated at the
angle 7 corresponding to backward direction. This method of calculation assumes that
the backscattered radiation is uniform over a conic section of the backward hemisphere,

corresponding to the small-angle cone. We have,

c 7= (t=2H/c)
Poert) = G255 [ [ Wr(®) Or(R(H + 2/m)
0

. \p;x(;,;) e:“(g(f[ + z/m)) eji'((ﬁ'rx-ﬁn.v)+(H+=/m)(5Tx—inx))

- (K(z,k,0,7) * K(z,k,—zk,7)) dk dz, (4.39)
where A
Conter = LAnx Vnx Tatm Ty Bm) (4.40)
m
Assume 7 <€ 2zm/c. With dz = —-c-%'ﬂd'r. we have the background water return in terms

of the lidar range,

Cwater - - s - P -
Puater(§) = (27)2/ Wry(R) Orx (R(H + (/m)) Wi« (R) OLx(R(H + {/m))
. @I®(PTX —PRX)+(H+(/m)(3TX —3RX))

C

La _ ) ) i
o /L " (K(D,%0.7) % K(D,%,~D&,7))dr d&, (4.41)

where L; = 0, L, = 2(m/c for infinite column of water. For finite water column with
bottom at depth D, the limits of the integral are L, = 2(¢ — D)m/c, Ly = 2(m/c, and
the expression is valid for ( > D. This is the contribution of photons after the leading
edge of the lidar pulse has transited the bottom.

4.3.1.3 Target return

The calculation of the target return and the associated shadow return is similar to

the calculation of the bottom and water return, respectively. The radiance backscattered
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from a target at depth z, location p,,,, is

Rtrg! - - = a 1
Luuck = At =265 = o) [[ Lex(H +2,5,5,t) d5 (442)

where A,,,. is the area of the flat diffuse reflecting surface of the target, R,,, is the

reflectance of the target, and L, is as given in (4.23). Inserting (4.23) into the above
equation yields

R Q f;:) 2Taw ( // Uy (R)Orx (R(H + z/m))

K(z,k,0,7) e” %7 ei"t‘(ﬁTx-F(H-i—-'-IM)iTx)dk) 8(B = Prrge) -

Lback(H + Z, ﬁ! §, t) = Atrgt

(4.43)

For a diffuse source on the target surface radiating upwards, radiance is given by (4.26)

The radiance presented to the receiver is given by (4.27). Since for two arbitrary functions
f(z) and g(z)

f(x)d(z — o) * g(z) = f(Zo)g(z — Z0) , (4.44)
we have
Alr t Ta‘zm T(?thrgt - -
Lax(p,3,t) = Q A, m; . /"'/\I’Tx("'l)e'rx(nl(H + z/m))
. e~IRuPtrge giR1(PTx +(H+z/m)iTx) e~ IR (P—Pergt) o—J(H+z/m)R2:5
' (K(kals(—)vT) *y K(21R27—ZR21T)) ﬂc—l- —dﬁ2— (445)

(2m)? (2m)?

where t = 2H/c + 2zm/c + 7. Incorporating the receiver FOV and aperture area, and

the spatial and angular receiver radiation patterns,

Ptarget(ta ﬁzrgz) = Anxan // Lnx(ﬁv s, t) "f/'nx(ﬁ - ﬁnx) onx(s - §nx) dﬁ ds.
(4.46)

Inserting the expressions

Ptarget(tv ﬁergt) = Ctarget ‘/"/ ‘I’rx('-‘l) erx('-‘l(H + z/m))
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) (K(Z) Rly (_)v T) *; K(Zv R2x —ZR% T)) e_jkl'ﬁ"gt eiil'(ﬁrx+(}1+z/m)i1-x)

jR2-P -3 z/m)%a-§ J= dR dﬁ
. /Qp&\,(ﬁ_ ﬁnx) e I%2Pdp /on.\'(g - §nx) e~ i(H+z/m)Ra3 go 1 2

(2m)? (2m)%’
(4.47)

where

A Q Atrgl Tazm Ta2w R"'!l'
C!arget _ Q Arx Qax en t . (4_48)

We have

I)target(tvﬁtrgt) =
Cuarge [-++[ Wrx(®1) Orx(Ri(H + 2/m)) Wiy (Ro) Oy (Ra(H + 2/m))
. e-jﬁzrgz-(kx-"cz) ejil-(ﬁ'r.t+(ﬂ+z/m)5'r.\') e—jiz-(ﬁnx*-(H-i-z/m)inx)
dik, dRo

. (K(z,kl,O,‘r) *y K(Z,RQ,—ZRQ,T)) W (—2;)—2' . (449)

In terms of lidar range,

Barget((v ﬁtrgt) =
Cuarger [+ ¥rx(®1) Orx(Ra(H + D/m)) Wic(Re) O (Ral H + D/m)
. e—jﬁtrg:-(ix-iz) ejix-(ﬁT.\'+(H+D/m)5rx) e-jiz-(ﬁn.\'+(H+D/m)5ax)
dRy dRq

* (K(kalvﬁwT) *y K(Da'-‘:?w—DR‘ZvT)) W W y (450)

where { = D + 5= and D is the target depth. The shadow return can now be written as

Pahadow((y ﬁtrgt) =
Cunadow [+ Wrx(R1) Orx(Ri(H +¢/m)) Wie(Ra) O (RalH +¢/m))
. e—iﬁtrgt'(il—iz) eji‘tr(ﬁ'r.t+(”+€/m)51'x) e—jiz-(ﬁn.\'+(H+C/m)5nx)

2(¢-D)m/e diy dR,
(K(G#1,0,7) ¢ K(G R ~CRam))dr 55 o

2m
0

(4.51)
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where

Q A.g Arx Qax T¢12tm wa B(m)

Cshadmu = m2 (452)
For an arbitrary target with spatial extent ¥,,,.(p),
IJtrgt(Cv ﬁ) = [/ Barget((v r)trgt) wzrg:(ﬁ - ﬁtrg!) dpcrgc- (453)

The total return due to the target is the subtraction of the shadow return from the target

return. This is a perturbation to the background return from the water column.

4.3.1.4 Evaluation of the integrals

To compute the bistatic lidar returns presented above, we insert the medium transfer
function in the integrals and perform the integration over the spatial frequency. The

analytical model for the beam spread function is given as (107, 108],

k(z,p,5,7) = &8(p)8(53)8(r)e"@+): (4.54)
+(1 — e7b%)e2E+e/m) g(2 1) h(z,p,5,T), (4.55)

where the first term is for unscattered photons, that is, 7 = 0. The second term is for
photons that experience scattering, 7 > 0. The term (1 — exp (—bz)) is the probability
that a photon will be scattered. Here a and b are the absorption and scattering coefficients
of water, respectively. The distribution of the variable 7 dependent on depth is given by

B (m)“’/""'

9(z,7) = ;72_1:(_;2—/772—) o exp (——T) (4.56)

which is the gamma distribution [109]. This is assured by the Poisson nature of the photon
scattering. As a photon goes through multiple scattering, the time interval between each
scattering can be modeled as an exponential random variable since the arrival time of
a photon to a scatterer is a Poisson random variable, and from the photon’s point of
view, the arrival of a scatterer is Poisson. The multipath time 7 is the sum of the time
intervals between each scattering. Since the sum of exponential random variables is a

gamma random variable, the distribution of 7 is gamma. An alternative explanation is

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the following [107]. The central limit theorem assures a Gaussian distribution for a large
number of scattering events. The gamma density is equivalent to Gaussian density when
the variable is positive definite, which is the case for 7.

Notice that the mean u and the variance a2 of the distribution are dependent on the
depth z. These are evaluated by using a statistical model developed in [110] and given
in [107,108]. From (4.55), we have the beam transfer function

K(z,k,q,7) = 8(t)e~ @92 4 (1 — e7b2)e o+ /g5 1VH(2,R,§,T) . (4.57)

By using the time-independent solution for the beam transfer function with assuming
small-angle scattering and that all the photons in the beam scatter, H(z, &, §,7) is cal-
culated as [107,108],

H(z,R,§,T) = exp (——TE ( P42G-R+ lm222)) , (4.58)
mz 3
where k = |g| and q = |g|. Notice that
H(z,%,0,7) = H(z,R, —2R,T) . (4.59)

Then, for the temporal convolution expression, we have

K(Zv Rla (-)1 T) *¢ K(Zv R?y —ZR21 T) = 8—20: [‘5(7’) e_sz
+e7% (1 —e7%) e™*7/™ g(2,7) (H(2,R1,0,7) + H(z, Ko, ~2R2, T))
(L - &™) eI (g2, 1) H(z,R1,0,7) %0 9(zT)H (2, Ry — 280, )]

(4.60)

We assume that the angular transmit and receive patterns are Gaussian, that is,

1
™ 05'10;"”

8.(3) = exp (—s2/0;= — s2/6%,) , (4.61)

where i is either TX or RX, denoting transmitter or receiver. The subscripts z and y

denote the z and y components of a vector. A Gaussian pattern is in agreement with
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the fact that a laser beam is spatially Gaussian [111,112]. Correspondingly,
6.(q) = exp (~2/6%, — a}/0%,) (4.62)
Then the transmitter and receiver FOV is given as
O = 76, 20, . (4.63)

Also, we assume

Yrx(p) = 4(p)- (4.64)

The radiance field changes slowly across the receiver aperture. We, therefore, assume
Yrx(P) = 6(p). (4.65)
For the Fourier transform of the aperture functions, we have
¥,(%) =1, (4.66)

where, again, i denotes either transmitter or receiver. In the actual system, this is true
for the PMT. The CCD has a large aperture for this to be true. However, each pixel
element of the CCD can be treated as a separate receiver with a narrow receiver FOV.
We will tell more about the modeling of the CCD return later in this chapter.

Inserting the above equations in the lidar return expression (4.41), we have

Pwater(() =

La ¢ o di
-2a —-26¢ X1 _ix-Xa
Cuater /L g d(r) e [/ Xt o

o)
1()
o _ dRr
-6 _ o=b\ j—act/m =X\ _jR-X2 =
+2 % (1—-e")e g(¢, 1) !/e e’ H((,K,0,7) ———(2”)24

1)
+ (1 —e%)? g 9cT/m
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e R G HC R G HG R R gy dr

13(C)
(4.67)

where L; = 0, L, = 2(m/c for infinite column of water. For finite water column with
bottom at depth D, L, = 2(( — D)m/c, and L, = 2(m/c. In writing the above equation
we used (4.59). The shorthand notation X is given as

Xi = ﬁ (H+¢/m)* (K2(Ohxs + Ox.c) + KBy + 6x,) (4.68)
where the subscripts z and y stand for the £ and y components of a vector. Also,
X2 = (Prx = Prx) + (H + (/m)(Srx = 5ax). (4.69)
The z component is given as
X2z = (Prx.e = Prx.c) + (H + {/m)(8rx.c = 8ax.), (4.70)

where p; ; and s; ; are the  components of g; and §;, i is TX or RX, denoting transmitter

or receiver. Similarly for the y component

X?.y = (ﬁTX,v - ﬁRX.y) + (H + C/m)(gT.\’.v - ng.y)' (4'71)
The task of calculating the water return has been reduced to calculating the integrals
(), I2(¢), and I3(¢). For the computation of the integral /; we make use of the integral

1

= —az? _jbz = -b2/4a
= / e~ eitt dp = — (4.72)

1
2\/1rae
which can be calculated by completing the squares in the exponents and recalling the

normal density. Writing /; in its £ and y components and using (4.72), we obtain
1 i\ 1
Q) = (7(H +¢/mP (Bhe + Bxc)” (Phey + )’
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Cex (_ (prxz — prxz + (H+(/m) (s7x: — SRX.z))z)
P (H +¢/m)? (6hx + O3x.2)
(prxy —PRXy + (H+(/m) (sTxy — SRX.y))z)
e (’ (H + C/m)? Bk, + Bx,) - (4R

To calculate I, we insert

H((,%,0,7) =exp (—3im(,"rcn2) , (4.74)

where k2 = |&|* = (k2 + k2), and again use (4.72), which yields

4(Tc 3
L) = (vr<lvr+</m)2 (O%X,z+0%x,,+3m(,, = C/m)g)

1 -1
4(rc 2
. 2 2 »
(eRx‘y + oT.\.y + 3m(H + C/m)2> )

. ex (_((P'rx.z — prx.z) + (H +(/m) (sTxa — Snx.z))2>
’ (H +/m)? (Ohx.. + ) + 5

g ). o
In I3(¢),
g(z,7)H(2,%,0,7) * g(z,7)H(z,R, —z2R,T) =
[ 96, " HG, 7B, TH(G, R, ~2R, 1)g(C, 7 = ') dr’, (4.76)
where

H((,k,0,7)H((, Rk, —2K,T) = exp (—3Lm(‘r'cn2) exp (—BLmC(T - T’)cnz)

= exp (—#(Tenz) = H((,&,0,7). (4.77)
Thus,
IS(C) = (!J(Cv T) *¢ Q(C,T)) 12(6) ' (478)
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where
7 uT 2u?/o? -1 ur
9(¢, 1) * g(¢,7) = ST T2a2/o%) (—') exp (—-;—2-) (4.79)
for 7 > 0. This can be calculated by using the characteristic function of the gamma
distribution.

The bottom return contains the integrals Iy, I5, and I3 too, but not the integral over

7. Thus, for the bottom return, we have

Piottom(§) = Chottom e~2D [5(7) e_%DIl(D)
+ 272 (1 - e7%0) e7o/m o(D, 7)IL(D)
+ (1-etP)? e'“""/"‘I:;(D)] : (4.80)

where ( = D + ¢r/2m and D is the bottom depth.

Inserting the transmitter and receiver aperture and radiation patterns into the shadow

return, we have

2(¢-DYm/c
D = L .. [ o h-Yativativy
Pshadow((v P:rgz) = Cshadow / om / /e
- = _ _ dl-il dl_{.g
* (K(C7 K1, 09 T) *; K(Cv Ko, -CN% T)) T2 /N0 dTw (481)

(2m)? (2m)?

where

1 9
Yl = Z(H + C/m)2 (K.l'.zo%x.l + Kiyo%x’y)

1
Yo = s(H+(/m) (k.0hx. +n3,0%x,)
Y3 = Kz (pTX.x + (H + C/m)sTX..t - ptrgt..r)
+Kl.y (pTX.y + (H + C/m)STX,y - ptrgt.y)

},4 = —K2z (pRX,z + (H + C/m)snx.: - ptrgt.:t)
—K2,y (pRXQy + (H + C/m)sﬂx.y - ptrgt,y) . (482)
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Inserting K (2, K1,0,7) *, K(z, kg, —2Rq, 7) from (4.60) into the shadow return expression,

we have

Pshadow (C, ﬁtrgf) =

2(¢—~D)m/c

£ o -2 [f p~N1+iVs d""'l ~Ya+5Ys dKQ
Cshadow 0/ 5 € 6(t) e :/] [/
JJO 12(0)
Yot _ _ dk
+e™% (1 —e™) e /™ g(¢, 7) Ji(Q) /f e YtV H(C, Ry, —CRay 7) (_%_;
N Ja(¢) ”
: _ di
- — o~y p—acr/m -Y1+3Ya = 1
e (1= ™) e7o7Im g(¢, ) () // VI HGROT) o
J2(<)
+(1—€ )2 —acf/m/ / -Y1- Y2+JY3+JY4P(C Ry, R ) d"cl dn2
' (27)? (21r)
Js(C)
(4.83)
where
p(Cv klv R?v T) = Q(C, T)H(Cv kla 6» T) *y g(C1 T)H(Cv k2a _CR21 T)' (484)

For the evaluation of J;, we insert Y; and Y; from (4.82) and use (4.72), which yields

h(Q) = (n(H+¢/m)? brxs brxy)”

.ex __(pTX.x + (H + C/m STX.z — ptrgt.:r)2
P (H + C/m 2 O%X..r

)
)
(prx.y + (H +¢/m) s7xy = Prrgey)’
R (" (H+¢/m)? Gy, ) e

Similarly,

R(Q) = (v(H+¢/m)? Orxz Orxy)

.e _(pr'x + (H + C/m) SRX,z — ptrgt.z)2)
P (H+(/m)? 6.,
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exp (" (prxy + (H +¢/m) srxy — p"g"y)z) : (4.56)

(H +¢/m)? Ofx,

The calculation of J3(() is performed similarly after recalling (4.59) and inserting (4.74).

We obtain
_ 2 [ g2 4(Te 3
1) = (w(H ¢fm (e + )
1 -1

(g2 4¢Te 2

<0Rx'” t 3m(H + C/m)’) )
exp (_(PRx.z + (H +¢/m) spx.r — ptrgt,:)2)

(H+¢/m)? Oy + $Z

. _(pRX.y + (H + C/m) SRX,y — ptrgt,y)z)

o (O ™) 6

Similarly,
— 2 ( g2 4(rc :
J4(C) = ("(H + C/m') (OT.\'.z + 3m(H + C/m)2)
1 -1
2 4¢Tc 2
' (o”'y T 3m(H + c/m)2) )
. exp (_ (P'rx,; + (H + C/m) STXz — ptrgt.:)z)
(H+¢/m)? 0« + %=

. _(prxy + (H +¢/m) sTx, — ptrgt,y)Q)

o ( (H+¢/mp g, + 5 ) e

The calculation of J5(¢) requires the calculation of p((, &y, &2,T), given in (4.84).
We can express g(¢, 7)H((,&1,0,7) and g(¢, 7)H((, 2, —(K2, T) as gamma distributions
within scalar factors. Then, p((, &1, K9, T) is a time convolution of two gamma distri-
butions corresponding to random variables 7, and 7,. In that case, p(, &y, K2, T) itself
becomes a gamma distribution, let us say, for random variable 73, where 73 = 1, + 72.
Assuming 7, and 72 independent, and calculating the mean and variance of 73, we obtain,
% ( 4
cf ¢ \I'(y)

p(<1 Ky, Ko, T) = Ty—l exp (_C3T)) (489)
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for 7 > 0, where

_ K
TE R
_u
“© = g
a6 = c+2)
c2 = co+ 2o
_ acfer + o)
Cy = C2
1 +¢3
2
CK
Z — ——1—
! 3m
2
cK
Z, = —2
2 3m
z(c, + c3)?
= - <7 4.90
R (490

with u and o2 as the mean and variance of the gamma distribution with parameters z
and co. This is a difficult expression to integrate over k, or k;. We can approximate this

as

p(<7 K1, Ko, T) ~ (g(Ca T) * Q(Cv T)) €xp (—TZI) exp (_TZ2) . (491)

Then,
J5(¢) = (9(¢,7) * 9(¢. 7)) J3({)Ja($)- (4.92)

This completes the calculation of the shadow return.

The target return is then

Puarget(C, Prse) = Clarger €7 [6(7) e P Jy(D)Jo(D)
+ €70 (1~ e7*P) e7*7/™ g(D, 1)Jy(D)Js(D)
+ e~ (1 —e7tP) e=*™/™ g(D, 7)Jy(D)Ja(D)
+ (1 - e™P)? em2/m Jy(D))| . (4.93)
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4.3.2 Simulated PMT/CCD returns

We have written a program in MATLAB and C to compute the lidar returns using the
bistatic lidar equations derived above. The program performs the numerical integration
using Gauss-Legendre quadrature [113,114]. The program can compute the background
return for different water types and the return from a submerged target at a specified
location. Our analysis assumes a flat ocean surface. There are studies in the literature
that discuss how to incorporate a nonflat surface [115].

We compute the PMT output for a monostatic setting of the transmitter and the
PMT. A simulation result is shown in Figure 4.7. The simulated object is 6.4 m (21 ft)
deep. The dashed curve is the background return from the water column without the
object.

For the CCD return, we use a bistatic lidar return computation. Assuming that each
pixel is a separate receiver element, we set different receiver position and angle offsets for
each pixel of the CCD. An example simulation of a CCD return is shown in Figure 4.8.
The corresponding CCD return from the CEFT data is shown in Figure 4.9. Notice that
the simulated return does not account for noise. For a better visual comparison, we add
Gaussian noise to the simulated data and display the result in Figure 4.10. The SNR is
20 dB. We compute SNR using the formula, SNR = 20log4(0./0,), where o2 and o2 are
the signal energy and noise variance, respectively. The SNR level in the real data shown
in Figure 4.9 is 28 dB, as recorded in the CEFT database. The method used for SNR
calculation of the real data is classified. It might be different than ours. The simulated
lidar return matches the characteristics of the real data very well. Notice the Gaussian
structure of the base of the mesh surfaces. This is due to the spatially Gaussian structure

of the laser beam, which we take into account in our simulation.

4.4 Image Reconstruction Results

Taking CCD and PMT measurements at various angles, we obtain different planar
slices and linear traces of the 3-D Fourier transform of the reflectivity. An image can
then be formed by 3-D inverse Fourier transformation. However, it is necessary to employ

interpolation of the data onto a Cartesian grid prior to inverse Fourier transformation.
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We performed reconstructions from both simulated and real data. In our simulations,
we generally used the same system parameters as for the real data. One exception was
the elevation angle §. The simulations did not work well for the elevation angles at which
the real images were obtained. This is because the analytic lidar return expressions are
for the small-angle scattering scenario and require the incident angle to be small. We
generated synthetic data for elevation angles that were 8 degrees offset from those of the
real data. This still provided a fair basis for comparison because the test object was
circularly symmetric. Almost the same real data would have been obtained if the real
CCD images had been collected at the elevation angles of the simulated data. Angular
diversity is important in providing reconstruction quality. Therefore, we used the same
range of angles in both reconstructions. We assumed a CCD of size 32 x 32 for the
simulated data, and we decimated the real CCD images accordingly in our results that
follow.

For reconstruction from the real data, we chose 6 CCD images from the CEFT data,
which consisted of 22 shots. We performed this selection in order not to simulate all 22
cases, and in order to include in the reconstruction only the images with high SNR. The
test object was a mine with a 1-m diameter, at a depth of 21 ft. We chose shots with
high SNR and, at the same time, tried to maintain high angular diversity. All 22 CCD
images of the CEFT data are shown in Figure 4.2, along with image number, SNR, and
orientation of the shot in § and ¢. Figure 4.11 shows SNR, 6, and ¢ as a function of
image number. We chose shots 2, 4, 5, 6, 12, and 16. In-water elevation angles 6 for these
shots were 17.67°, 17.42°, 16.76°, 13.16°, 14.42°, 16.15°, respectively, and azimuth angles
¢ were 140.45°, 138.79°, 168.35°, 183.23°, 179.62°, 201.95°, respectively. The average
size of the beam spot on the water surface was 11.6 m. The reconstruction results are
shown in Figure 4.12. Displayed images are the cross sections of the 3-D reconstruction
at z =0, z =0, and y = 0. The reconstruction from the simulated data is shown in
Figure 4.13. The reconstruction from the simulated data with 20 dB of Gaussian noise
is shown in Figure 4.14. In these reconstructions, we used only CCD data; we did not
include PMT data. This is because the PMT data were found to be of no help in the
reconstruction, since the spatial length of the laser pulse was comparable to the object
size [116].
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The reconstructions from both simulated and real data display the same characteris-
tics. The reconstruction from the real data, however, is more smeared out compared to
that of the noise-free simulated data. Reconstruction from the simulated noisy data is
closer to the real case. Also, in the real data case, the CCD images involve effects of the
wavy ocean surface, which usually is in the form of smearing [115]. The range of angles
in 6 and ¢ were approximately 4.5° and 63.2°, respectively. Since the angular diversity
is large in the ¢ dimension, we obtained good resolution in the z-y plane.

Our image reconstruction process was based on Fourier inversion, which does not
account for several factors that are present in the actual imaging scenario. These and a
few other related factors are as follows.

(1) The Fourier based reconstruction assumes the integral is a line integral through
the object without taking into account the opacity of the object.

(2) The tomographic model assumes that the contribution of a point reflector to a
projection is independent of the view angle. In practice, a Lambertian scattering model
is probably more accurate, where the brightness falls off with the cosine of the angle
from the surface normal. Accounting for Lambertian scattering via a CLEAN approach
to image reconstruction can significantly improve 3-D image quality [117)].

(3) There is an exponential decay term in the integral for the CCD returns, because of
the absorption in the medium. In this case, the projection integral is known as attenuated
or ezponential Radon transform (3,118]. There are studies on the inversion of this type
of projections [119-124].

(4) The size of the beam spot on the surface of the water may be different from shot
to shot, depending on the altitude of the aircraft, elevation angle, etc. Consequently,
the dimensions of each CCD image used in a reconstruction are different. Before the
reconstruction, each image should be resampled to a larger or smaller grid to make the
size of the images equal. This is an interpolation between two uniform rectangular grids,
and can be performed precisely {125].

(5) In the actual system, each CCD image has a different noise level. Thus, a noise
cancellation process needs to consider the CCD images altogether to estimate each level
and apply an appropriate parameter for noise cancellation. It is also an interesting

problem to inherently account for noise in the reconstruction process. Another interesting
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problem would be to select from a noisy collection of CCD images the optimum set of

projections that will trade off angular diversity and the effects of noise.
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Figure 4.1 Data collection geometry for lidar imaging of underwater objects.
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1,23.2,14.7, 1855 2,24.0,17.7,140.5 3,23.9,17.3,139.6 4,25.1,17.4,138.8

5, 27.6, 16.8, 168.3 6, 26.6, 13.2, 183.2 7,265, 13.2, 1844 8,25.3, 15.0, 165.8

9, 25.0, 14.5, 166.9 10, 23.6, 14.9, 168.1 11,26.1,14.4,175.6 12,28.0, 14.4,179.6

13, 24.6, 14.7, 180.8 14,26.1, 14.3, 1815 15, 23.6, 18.5, 201.0 16, 26.3, 16.2, 202.0

17,24.9, 14.0, 187.0 18,253, 144, 187.9 19, 27.0, 14.0, 187.1 20, 25.8, 14.1, 185.9

21,25.3,14.5, 1854 22,214,145, 184.2

Figure 4.2 CCD images from CEFT database along with image number, SNR, and
orientation of the shot in § and ¢.
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Figure 4.3 Real PMT data (CEFT database, shot 12, fourth quadrant).
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Figure 4.4 Tomographic interpretation of the PMT output.
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Figure 4.6 Bistatic lidar geometry.
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Figure 4.7 Simulated PMT return (solid). Dashed line is for background return from
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Figure 4.8 Simulated CCD return.
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Figure 4.10 Simulated CCD return with noise.
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Figure 4.11 Shot angles and listed SNR values of the 22 CCD images from CEFT
database.
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Figure 4.12 Reconstruction from real data (CEFT). Displayed images are the cross
sections of the 3-D reconstruction at (a) z=0, (b) =0, and (c) y = 0.
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Figure 4.13 Reconstruction from simulated data. Displayed images are the cross sections
of the 3-D reconstruction at (a) z =0, (b) z =0, and (c) y = 0.
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Figure 4.14 Reconstruction from simulated data with noise. Displayed images are the
cross sections of the 3-D reconstruction at (a) z =0, (b) £ =0, and (c) y = 0.
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CHAPTER 5

CONCLUSIONS AND FURTHER WORK

In the study of SAR imaging of runways, we investigated the problem of runway imag-
ing from an aircraft approaching for landing (79,126, 127]. Specifically, we studied the
performance of the w — k algorithm in this highly squinted scenario, which necessitates
incorporating the wavefront curvature into the image formation process. We demon-
strated the aberrations that the algorithm can produce when the squint angle is close
to 90°. Based on our careful analysis of the algorithm, we explained the source of these
aberrations being mainly as the inaccuracy of the interpolation. Furthermore, we showed
that the interpolation accuracy can be improved by increasing the number of temporal
samples in our interpolation scheme, which exploits the structure of the unevenly spaced
data so as to use a 1-D interpolation to interpolate 2-D data. The computational com-
plexity of the interpolation increases only linearly in the number of temporal frequency
samples.

We also investigated a general inversion method (GIM) which accurately models the
wavefront curvature. We compared the results with those of the w — k algorithm. Since
GIM is a direct solution of the measurement equation, it is expected to produce results
closer to the optimal solution. Since GIM is computationally more expensive and the
performance of the w — k algorithm can be improved by increasing the number of tem-
poral samples, which in turn increases the complexity, for fair comparison, we let both
algorithms use the same amount of computation. In the simulations, the w — k algorithm
produced comparable results to those of GIM. However, since GIM is inherently robust
to noise, results of GIM were superior in the noisy case.

We presented a solution to the left-right ambiguity problem of runway imaging using
the w — k algorithm. We showed that the ambiguity can be resolved using a second
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antenna that is spatially separated from the main antenna. We presented simulation
results supporting our solution.

The point target simulations reported in Section 2.3.6 were obtained by using the
software mentioned in Section 2.3.5. We had hoped to include simulations of larger,
realistic targets obtained from sophisticated computational electromagnetics software
such as Xpatch or FISC [128,129]. However, Xpatch does not provide near-field data
and the frequency of operation in our application is very high for FISC, which would
require an unreasonably large computer memory. A new version of Xpatch, capable
of performing near-field simulations at high frequencies, was scheduled for release early
in the year 2000. Unfortunately, this schedule did not hold and we could not include
simulations obtained by this new software. This task is left for further research.

In the study of imaging of objects buried in soil, an acoustic approach was pursued,
with the primary purpose of detecting and imaging cultural artifacts (96,130, 131). A
mathematical model and associated computer software were developed in order to simu-
late the signals acquired by the actual experimental system. We developed a SAR-type
reconstruction algorithm via the application of synthetic aperture theory for acoustic
data collected in a bistatic manner. Subsurface images were reconstructed from simu-
lated data using this algorithm. Objects were detectable, but near-field objects suffered
from shifts and smears due to the invalidity of the employed approximations in the near
field. The SAR-type reconstruction algorithm was also applied to real data obtained
from the experimental system. However, the result was not satisfactory; there was a
large amount of clutter in the image, although there were bright spots at the locations
of the objects. The reasons for this are the following. (1) The plane-wave approximation
for objects close to the surface is invalid. (2) In a SAR reconstruction, azimuth resolution
depends on the distance covered by the data acquisition system during illumination of
a target by the transmitted beam. In our experimental system, the length of the scan
was limited by the size of the box, which presented a complication to successfully ap-
plying SAR-type imaging. (3) In our data model we incorporated the attenuation of the
medium by using a single parameter for a single frequency. However, the attenuation of
the soil is frequency dependent, and high frequency components of the return signals are
attenuated so much that they are almost invisible in the return signals. (4) The system
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was not designed to focus the transmitted energy. Hence, there were contributions from
all directions around the transmitter. To account for wavefront curvature, we formulated
processing of the simulated data using the 3-D version of the monostatic w — k algorithm
which would be expected to provide superior results in the near-field. Implementation
and application of this algorithm is left for further research.

In the study of lidar imaging of underwater objects, [116,132], we formulated the
lidar detection and localization problem as a 3-D tomographic reconstruction problem:
We described the relation between the airborne CCD/PMT returns and corresponding
tomographic projections of an underwater object. Having CCD/PMT data at various
angular orientations with respect to the object, a 3-D tomographic reconstruction was
obtained. We developed software to simulate lidar returns in PMT and CCD sensors.
Our simulator can model multiple scattering and absorption for various water types and
system parameters. Qur simulator in the acoustic imaging scenario was able to model
absorption and scattering, too; however, it was simpler. Here we use a sophisticated
analytic model for lidar returns. We also worked with a real data set from a previous
study (1998 Competitive Evaluation Field Test (CEFT), Panama City, FL). We presented
our reconstruction results from the simulated and real data. Simulated data were found
to fit the characteristics of real data very well. Our image reconstruction process was
based on Fourier inversion, which does not account for several factors that are present
in the actual imaging scenario. For instance, absorption in the medium introduces a
decaying exponential in the projection integral in CCD returns. In the real system the
CCD can saturate. Also, the noise levels in the real data are different in each shot.
Furthermore, Fourier-based inversion assumes that the object is transparent, which is
actually not the case. The simulator can be useful in investigation of new algorithms

which account for these problems in order to produce better reconstructions.
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APPENDIX A

QUADRATURE DEMODULATION AND
DERAMPING

The radar return in real passband form is given in (2.6). When the linear FM pulse
in (2.1) is inserted into (2.6), we obtain

i 2r, vig
5alt,9) = [[ lo@, ¥ cos (wo(t - 2t +alt - =2 + i, y')) dedy. (A1)
We pass 3gx(t,y) through the structure as shown in Figure A.1 where

g°(t) = 2cos (wo(t - T) +aft — 10)2) (A.2)
¢'(t) = —2sin (wolt — %) +alt — 7)?) (A.3)

and 7, = %‘1, with R, being the distance to the center (Xj, Yp) of the target scene from
the origin of the coordinate system. The structure in Figure A.1 is referred to as a
quadrature demodulator. It is used to remove the carrier and obtain the in-phase and
quadrature components of the complex baseband version of the return signal. When the
oscillation phase of the demodulating signals ¢°(t) and q*(t) is wo(t — 7o) + a(t — 7)? as
above, instead of w,t as in the former procedure to remove the carrier, the processing is
called deramping, and it provides the temporal Fourier transform of the data directly.
As a matter of fact, this can be recognized as the chirp transform {133].

Let us concentrate on the upper branch and define

§2(t,y) = 3a(t,y) - ¢°(t), (A.4)
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which is

[/ gz’ ¥')| 2cos ot — 7o) + aft — 70)2) (A.5)
~ ,
cos( o(t — ) a(t — 2r’") + (', y)) dr'dy'. (A.6)
R — /,

We use the trigonometric identities

2cos Acos B = cos(A+ B) + cos(B - A) (A.7)
—2sinAcos B = -—sin(A + B) +sin(B — A), (A.8)

by writing

A+B = w0(2t—n,—%)+a[(t—r,,) +(t—%)]+w(x y) (A.9)
B-A = wo(t—?%,“-—t+r.,)+a[(t—%)z—(t—ro)"’]+w(x',y’). (A.10)

Notice that the term with the argument A + B has the frequency component 2w,, which
is higher than the cutoff frequency of the lowpass filter. Therefore it is filtered out. To

write the remaining expression in a better way we manipulate the B ~ A term:

2 ’ 4t 4 1] / 4
B = R Ry~ R+ S R ey A

For the third term, use

r?— R = (r, — R)*+2Ry(r, - Ro). (A.12)
Thus, we have
2 1] 4a / 2 U
B-A = —>(w+2t-20m)(r, - Ro) + (1, — R)* +9(z,y). (A.13)
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Since w = w, + 2a(t — 7,) and k = w/c, we have

i 4
si(ty) = [/ lg(z’,y")| cos (—2k(r; - R,) + ga(r; - R,)? +w(z',y’)) dz'dy’,
(A.14)
Similarly, for the imaginary part, we can obtain

4a, ,

sx(y,t) = // lg(z', y')| sin (—2’9(7'; -R) + g(ry - R)*+ 'w(:z:',y')) dr'dy’.

(A.15)
Finally,
se(t,y) = sq(t,y) +Jsi(t.y) (A.16)
yields the following, which was stated in (2.9),
sa(t,y) = /7 lg(z’. y)| exp (ju(z',y)) (A.17)

exp (—j2k(r'y - Ro)) exp (j%(r; - Ro)z) dr'dy’. (A.18)
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Figure A.1 Quadrature demodulation of the received signal.
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APPENDIX B

BESSEL AND HANKEL FUNCTIONS

Here we summarize for easy reference some definitions and asymptotic forms of various
Bessel functions which are used elsewhere in this thesis. For further reference, see [98,
134,135].

Hankel functions of the first and second kind, of order p, are given as

HO(2) = Jy(z) + j¥p(2) (B.1)
HP(z) = Jp(z) = jYp(z) (B.2)

where J,(z) and Y,(z) are the Bessel functions' of the first and second kind of order p,
respectively [135, p. 364].

When p is fixed and |z] is large, the Bessel functions can be approximated as

Jp(z) = ‘/?—I[A(P,I) cos§ — B(p,z)sin§] |arg(z)| <7 (B.3)
Yp(z) = \/%[A(P» z)sin§ + B(p, z) cos ] |arg(z)| < = (B.4)

where £ =z — (p/2 + 1/4)7. Hence

HO() = \/%{A(p,xmB(p,z)]exp(je) -m<arg(z) <2 (B
HP(@) = ‘/%[A(p,x)-w(p,x)]exp(—ja -2r <argl@) <7 (B6)

'Y,(z) is also known as the Neumann function and is denoted by N,(z) [134].
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The terms A(p,z) and B(p, z) are given as follows:

~ Yo (-1e ) (B.7)
o (2z)
Z( 1 "ﬁ’;—’jﬁk—tll), (B8)
where
PP k) = g (= D= )= ) . (B9)
k terms
and p = 4p%. Thus,
o (=1 =9)  (p—1)(k—9) (s —25)(k — 49)
Apz) = 1= =gy + 1 (82)8 (B.10)
_ (p=1) (p=1)(u—9)(u—25)
B(p,z) = ) - 37 (82)° +.... (B.11)

If p is real and non-negative and z is positive, the remainder after k terms in the expansion
of A(p, z) does not exceed the (k + 1)st term in absolute value and is of the same sign
provided that k > 1p — 1. The same is true of B(p, z) provided that k > 3p — {. For
p=1,

- (u—=1)(u—=9)  (p—1)(p—9)(u—25)(n—49)
ALz) = 1-"—reyr + 2! (82)8 +
14 38 _$#.52.7.9

N8z 4! (8z)

~ (p=1) (p=1)(p-9)(p - 25)

Bll2) = &5 31 (8z)°
3 32.5.7

= G FEpE T (B.12)

As |z| — oo, we have A(p,z) < 1 and B(p,z) < 0. Thus,

HY(z) = \/—% exp (J' (z - (%p + %)w)) (B.13)
HO(z) = \/;i; exp =iz ~ G+ P)m)) (B.14)
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which is the standard approximation given in most books [98]. For p =1,

1 . .
H'(z) = |[— (-1-j) exp(jz) (B.15)
@y o .J1 . :
H"(z) = o (-1+7) exp(—jz). (B.16)
Derivatives can be computed by

d p
I';[Z,(ax)} = aZ,-(az) — ;Zp(ax) (B.17)
= —aZ,.(az) + gzp(az), (B.18)

where Z, can be J,, Y,, H{" or H{®.
Modified Bessel functions of the first and second kind, of order p, are denoted by

I(z) and K,(z), respectively, and are given by

I(z) = jPJ(jz) (B.19)
Kplz) = Z3°*'H(jz) = Z(=)"* HP (~jz). (B.20)

The modified Bessel function K,(z) is also called the modified Hankel function [134].
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APPENDIX C

FOURIER TRANSFORM OF THE IMAGING
KERNEL

C.1 Two-Dimensional Case

Here we compute the two-dimensional approximate Fourier transform of the imaging
kernel f(z’,y;w) by first transforming it in the y dimension, approximating the resulting
expression and then taking its transform in the r’ direction. Consider the following 1-D

Fourier transform pairs {134, p. 118; 136, p. 453],

£ {sin(bm)} _ | mhle TR k) < .
Il VeT+? 0 Ik, > b '

r {cos(b\/a2 + y’)} _ —nYo(a\/6® — k2) |ky| < b (C2)
I Vel + 3 2Ko(a\ /K2 — %) |ky| > b '

where the functions Jg, Yy and K are defined in Appendix B, and the following forward
and inverse Fourier transform definitions are used:
*® ~jk
Fik) = F, {f@)} = [ f@evdy (€3)

f@) = TF, (Fl)} = o [ Flk)e™vd, (C4)

Combining these two pairs we obtain

5 {exp (—jovaT 7 )} _ { —jrHP (0 B —K2) |k, <b )
Val+ 7 2Uo(aRT—0) k| >b.
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Differentiating both sides of the pair with respect to b yields
~mH (a, /62 = k2) |kyl < b
oo (-pvar+ i)} =1 o N (C.6)
—jmHE (—Ja\/ky - bz)m |kyl > b

By using this formula, the 1-D Fourier transform (in the dimension y) of the imaging

kernel in (2.11) can be written as

(2 z
- H® (', [ak? - k2) 42:, = lk,| < 2k
—jrH® (—jz’ VE2 — 4k2)7%‘§a—2 |ky| > 2k

By using the asymptotic expansion of the Hankel functions from Appendix B, we can

write

Fo{f@' yiw)} = (C.7)

1 .,
A (v I B) T (14 0)e VIR k| <ok
{ 1
—in2kz’ . - o ! —ak2
‘ ksf';k, (=jme \[RZ = 4k2)7? (=14 j)e = VR k| > 2k

!

' . rr’ : —iz' /akI—k2
(1—]) 2k (m) e™’ 2=y |ky| < 2k

F,(z' kyw) =

= 9 ! (CS)
| (1+)) 2 (I‘Tﬁ) VR k) > 2k
Let us define the amplitude functions
%
nr
ko) = 1-j)2%k|—— C9
ay(k, ') (1-7) ((4k2—k§)5> (C.9)
1
nz’ :
kY = 1-j2zk{ ————=] . C.10
wlke) = (1-5)2 ((4k2_kg)g) (C10)
For the case |k,| < 2k, a;(k,z’) can be approximated as
a1 (k,2') ~ dy(k, 2) = ";”" . (C.11)
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Since the change in @,(k,z’) with respect to z’ is slow, we can approximate a,(k,z’) by
a constant A,;. Then, taking the 1-D Fourier transform of the right-hand side of (C.8)

with respect to z’, we obtain

omA, 6k + JIE—KZ)  [ky| < 2k
F(kzl, ky; u)) =~ , __z,\/icrw (C.12)
Fu {ag(k,z Je~= VA& } Ik,| > 2k .

C.2 Three-Dimensional Case

Consider the Fourier transform pair from [18]

e—ja,/bzﬂuy: B —j2m e_j,,\/m_—kg (C.13)
i CGE=ETS RN '
with the definition of the Fourier transform given as
Flkeiky) = Foy {f (.9} = [[ (@ y)e e dzdy. (C.14)

Taking the derivative of both sides of C.13 with respect to a and rearranging,

-J 27ra ]27fab -, 2 _ L2 2

ay/b2+x24y2 | _ by/aT—k2—k

Fuy {e jay/b+z+y }_ [[az myorE + ok kg)} e IV i (C15)
z y z

Applying this to the 3-D imaging kernel

f(z,y,2'iw) = exp (—j2k\/z2 +y2+ 2,2) : (C.16)

we obtain the Fourier transform of the kernel in the z and y directions, which we denote

by F;y(kz, ky, 2’;w) and give as

’ 4nk j47l’k2’ —j2' S8k k2 k2
N VIR 17
Faylhz by, 2300) [[4k2 “E_m ae-e-)|° - e
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For the case when |k;|, |k,| < 2k and the variation in 2’ is small, we can approximate

the amplitude function on the right hand side by a constant, A;. Then,

Fkg, ky ko w) = 2w Ag 8(k + \[4K? — K2 — £2). (C.18)
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APPENDIX D

STRIP-MAPPING SAR INVERSION

Here we describe the correlation-based SAR inversion algorithm for a monostatic SAR
moving along a straight path and using a linear FM (chirp) probing signal [41, 42, 54].
In strip-mapping SAR, the antenna is directed broadside to sweep out a strip on the
ground. At regular spatial intervals on its flight path along the y axis, the radar transmits
a real passband signal as in (2.1). The range function and the complex reflectivity
function are as defined in (2.4) and (2.5), respectively. We denote the range function by
r, when the radar is at location y on the flight path and the coordinates of a particular
scatterer are given by (z’,v’). The return signal from a scene with reflectivity g(z,y) is
the sum of returns from all infinitesimal scatterers in the scene within the area illuminated
by the radar beam. The return signal in real passband form can be written as

0
2r . 2r} '
3a(t,y) = _// l9(z’, ¥)| w(z',y — y') Re {p(t - gllwolt==t) el ”} dr'dy’,
—o00

(D.1)

where the window function w(z,y) models the radar antenna gain. After passing this
signal through a quadrature demodulator with an oscillation phase of w,t, we obtain the

complex baseband signal as
i / 2T, . /
sa(t,y) = // g y) wiz'.y - ¢) p(t - —*)exp (—j2kor}) dz'dy’  (D.2)
where kg = w,/c.
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For the case £ >> y — v/, that is, the case of a broadside-looking radar in the far-field,

we can write using a Taylor series approximation,

— a\2
,’.;l: /112+(y_yl)2zz'+.(y_2.x_?.l_ . (D.3)

We shall assume o /
Ay o, 2T
p( - ) = p(t . ). (D.4)
Then

7 ’ 27/ . ’ . -y)? ’
sa(t,y) = // 9(z".y) w(z',y—vy) p(t——) exp (—j2koz’) exp <—J2ko£y2—;,/-)—) dr'dy’ .

(D.5)
Let

(e, y') = g(z',y) exp (—j2koz") (D.6)

and insert ¢t = 2z/c. Also, assume the antenna gain is separable into range and azimuth

components as

w(z',y) = w(z)wa(y') . (D.7)

We then have the spatial version of the return signal as
i ) ' ' 2 ’ . ~y')? 0 g0
s@.9) = [ ) wre s =) e - N exp (b L) dr'ay. (D)

We can write this as

s(z.y) = [ wle) 3() poe - ) de’ (D9)
with - )
g(z'y) = f 91(z',y) waly - ¥) exp (—jko(l——;,y—)) dy . (D.10)
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D.1 Range Processing

From (D.9), we see that

s(z,) = [ur(2)3(z, ] * o) (D.11)

An estimate of g(z,y) is found by matched filtering:

iy = sy epr(-2) (D.12)
= [ p(-2e-9) (D.13)
= [Ju) s ) s~ P (-2 - dr'de (D14

= [w) @) [ [ pCEe-2) p' (-2 - 9) de| do'. (D.13)

-0 —oC

Defining the autocorrelation as

o) = [ pCu) p Gl -2)) du (D.16)

and making a change of variables u = £ — 2’ in the inner integral of (D.15), inner integral
is computed to be p(2(z — z’)). Thus,

i(z.y) = @3z, v)] + o). (D.17)

For pulses with large time-bandwidth products, p(%’) is approximately a narrow sinc [42].

D.2 Azimuth Processing

Expressing (D.10) as a convolution,

) Y
se) = [ o) =) e (w2 ) ay 1y
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2
= gi(z,y) * [wa(y)exp (-J'koy?)]- (D.19)

Let )
ha(y) = wa(y) exp (—jko%-) . (D.20)

An estimate §,(z,y) of ¢:(z,y) is then found again by matched filtering as follows

a(z,y) = §(z,y) * ha(-y) (D.21)
= [ s@vhi(~y-v) dv (D.22)
Fod a2
= [ @) wnte = vy exp (=ikoETEE) bty - ) o ay
-~ ) ha(v-y") ”
(D.23)
= /gl(a:,y’) [/ ho(v =y )Ro(v — ¥) du] dy'. (D.24)
Defining -
#w) = [ ha(whi(u-2)du, (D.25)
the inner integral equals ¢(y — y'). Thus,
gi(z,y) = iz, y) * #(y) - (D.26)

In this step, instead of §(z,y) we actually use §(z,y) which has been found in the range
processing step.
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APPENDIX E
A GENERAL INVERSION METHOD (GIM)

Here we describe briefly a general inversion method for approximate solution of the
Fredholm integral equation of the first kind. This method is due to Arikan [74]. The
Fredholm integral equation of the first kind is given as

s(2) = [ K(z.)g(w)dy +n(a), (E.1)

where s is the measurement, g is the physical property to be estimated, and n is the
measurement noise. The measurement kernel K models the relationship between g and
s, and it is assumed to possess finite energy; that is, it is square summable. When we
have a 2-D physical property to be estimated, and a number of observations, we may

have a set of integral equations
silz) = / Kz —.y) g y) dy dz’ +ni(z) 1<i<I. (E.2)

Each equation represents a nonseparable projection in y and a convolution in z. One
way to solve this set of equations is to decompose the measurement kernel into singular
functions, obtain a form of separable projection followed by convolution, and then solve
for the physical property by multichannel deconvolution followed by back projection.
This method has been proposed and applied to borehole induction measurements [74].
Any finite energy kernel can be approximated arbitrarily closely by means of a kernel
of finite rank where the approximation is in the mean, that is in the metric of the space

of square summable complex valued functions [77, p. 158]. Thus,

Ji
Ki(z,y) = )_ Mijuii(z)vi;(y) (E3)
=1
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where

/\"1 2 /\,'2 > ... > A,‘J‘. >0 (E4)

are the singular values. Error in this approximation decreases as J; increases. The

singular functions satisfy

Aijuii(z) = /Ki(f,y)vij(y)dy (E.5)
Nvig(z) = [ Ki (@ yus(e)dz (E6)
and
/ w(z)ul(z)dr = b (E.7)
[viwridy = 6. (E.8)

Inserting this into (E.2), we have

//Z’\Uuu(x U;J(y)g(l' y)dydr' +ni(z) 1<i<I. (E.9)

This is a sum of convolutions of u;;(z) with projections of g(z, y) onto v;(y). Thus, com-
ponents of g(z,y) lying in the subspace spanned by all v;;(y) influence the measurement.
To obtain a separable relation, we need to find an orthogonal basis for this so-called

y-observable subspace. Let the orthonormal basis functions be

gm(y) 1<m<M (E.10)
and write
viiy) = 2 QijmGm (Y) - (E.11)
Then,
S;(J?) z: /Z’\u“v - J“ tJm/Qm(y I y)dyd.’l: +nl( ) . (E'12)
j=1
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Let B
Zim(T) = Y Njuii(z — '), (E.13)
=t

which is independent of the unknown g(z,y); hence it can be precomputed. The projec-

tion of g(z,y) onto a basis component of the y-observable subspace is

pn(@) = [ ahW)g(a.v)dy (E-14)

We then have
M
si(z) = Y /z,-m(a: — 2 )pm(z)de’ + ni(z) 1<i<T. (E.15)
m=1

Here, zi,,(r) is known and we will estimate the projection p,(z) by multichannel de-
convolution. Then g(z,y) will be obtained by back-projection. The estimate of the

projection is given by
I
pm(z) =3 / homs(z = 2')8i(2')dz’ . (E.16)
i=1

The back-projection results in

M
i(z,y) =Y Pm(@)am(y) . (E.17)
m=1

Measurement noise is accounted for in the deconvolution stage. The choice of deconvo-
lution filters hpni(z) depends on the available a priori information on the statistics of p,,

and on the estimation criterion used. In the Fourier domain

Pn(w) = z[: Hpi(w)Si(w), (E.18)

i=1

which can be written in vector-matrix form as

P(w) = Hw)Sw) . (E.19)
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Similarly, (E.15) can be transformed as

S(w) = Zw)PWw) + Nw) - (E-20)

Thus,
Pw) = Hw)Z(w)P(w) + H(w)N(w) . (E.21)

The forms of H(w), which are to be given next, are not dependent orn the measure-

ments. H(w) can be precomputed for each frequency w and inverse transformed to find

the deconvolution filters hpy;(z).

E.1 Least-Squares (LS) Estimate

Assume there is no prior distribution on P(w). The least-squares criterion states

Pw) = min || S(w) - Z(Ww)E(w) [ (E.22)

Expanding the square of the norm and taking the derivative with respect to P(w) to find

the minimizing argument, we get
Pw) = (2! w)Zw)] "' Z'(w)Sw) (E.23)

where ! indicates Hermitian transpose. Thus, the filter that produces P(w) to minimize

the norm squared is given as
H g w)= [é*(w)é(w)]'lg'(w) : (E.24)

E.2 Maximum-Likelihood (ML) Estimate

Assume N(w) is Gaussian with zero mean and autocorrelation R, (w). Then the

log-likelihood is given as

= —3(8() - ZW)PW) B3 () () - ZW)Bw)) (E.25)
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and the optimal estimate is

arg r_xgl(?)cﬁ = arg g}}}} (ﬁ(w) - é(w)i’_(w))t é‘l(w)(g(w) - g(w)g(w)) (E.26)
= min [S()'E; (@)Sw) - 5By ) ZW)B(Ww)
~P'(w)Z! () By (w)S(w) + P'(w) 2 (w) By (w) Z(w) P(w)]

(E.27)

Taking the derivative with respect to P(w) and equating to zero, the optimum P(w)

satisfies
S()' By (W) Z(w) = P'w)Z' (w) By (w)Z(w) - (E.28)
Hence,
PW) = (Z'W)By w)Z(w))” Z'(w)B5 (@)SW) . (E.29)
and the filter for this criterion is
Hyp ) = (Z'(W)B5 (@) ZW) ™ 2 w) By (w) (E.30)

E.3 Maximum a Posteriori (MAP) Estimate

Assume P(w) and N(w) are independent and Gaussian distributed with autocorrela-

tions B, (w) and R,(w), respectively. Since
S(w) = Z(w)B(w) + N(w) , (E.31)

the probability distribution of the measurement given P(w) is Gaussian with autocorre-

lation B, (w). If we denote a probability distribution function by f, we have by Bayes

rule,
ff_l§ - f§|£f£ ) (E32)
fs
The MAP estimate is then
Pw) = arg max fpis (E.33)
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_ E.34
arg max fsipfe (E.34)

= argmax (log fyp + log fp) (E.35)
= argmin [S'W)By (@)S(W) - §'(w) By (@) Z()B(w)
-P'w)Z () By (w)S(w) (E.36)
+P'(w)Z'(w) By (w)Z(w)P(w) + P'(w)B;' W)PW)] . (E37)

Taking the derivative of this quantity and equating to zero, we obtain the following

equation to be satisfied by the optimum argument
S'(w)By! (w)Z(w) — P'(w) 2! (w)By' (w)Z(w) — P"(w)Bp' (w) = 0. (E.38)
Thus, we have
Bw) = (Z'W)By @)ZWw) + B;' W) Z'(w)By'w)Sw),  (E39)
and the filter for this case is

Hypw) = (—éf (W)By (W) Z(w) + ﬁ;l(w))_l ZH(w) Ry (w). (E.40)

E.4 Regularization
The error covariance of the maximum-likelihood estimate is
£ {(£<w) - Hw)SW)) (PWw) - g(w)ﬁ(w))‘} = (Z'WER W)ZW) ™ . (E41)

The maximum-likelihood estimate is unbiased, but its covariance can be very large due
to the inversion at those frequencies where Z(w) has small singular values. A regularized

maximum likelihood estimate can be written as

Hypplw) = (g(w )Ry (w)Z(w) + #Q(W)Q - Z'(w) Ry (W) (E.42)
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where the regularization parameter pu(w) can be either a fixed function of w or can be
chosen adaptively depending on the measurement. The former is not satisfactory when
there are many frequencies and the noise is not independent and identically distributed.
The latter, on the other hand, requires too much computation. In [74], the filter is chosen

as a solution to the problem

min || H(w)Z(w) - L|I% (E.43)
subject to the constraint

tr [H(w) By (@)H' ()] < €(w) (E44)

where || A ||r denotes the Frobenius norm, given as

O

I4llr= (Z Ié,,-lz) : (E.45)

When the cost in (E.43) is small, the mean of the estimate is close to the true value

and the constraints put an upper bound on the expected energy of the noise around this

mean. The solution to this problem is given as

H,(w) = (Z'w)By @)Zw) + #2L) " Z'(w)By'w) (E.46)

with u chosen as the solution to

2
f (——’7——) = (W) (E.47)

where the 7;’s are the singular values of QN% (W) Z(w)-
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APPENDIX F
APPLICATION OF GIM TO SAR INVERSION

Passing the real passband data in (2.6) through a quadrature demodulator with an

oscillation phase of w,t, we obtain the complex baseband signal as
o 2r,
_ ! ! ! _ %y L, Y
sa(t,y) = // 9(z',y) w(z',y — y) p(t — —) exp (—j2kory) da'dy’  (F.1)
~00

where ko = wo/c. The spatial version of this signal can be obtained by making a change

of variable t = 2z/c, giving
i 7 2 ' . !
si(z,y) = // gz, y) w(z',y-y)p (;(x - ry)) exp (—j2kor)) dz'dy’.  (F.2)

We perform range compression on this signal by using a matched filter to give

2(z,9) = s1(z, ) * (=)

[ seww (—-0) d

-0C

= /7 9(z',y") w(z',y - v)

—00

Lorlie- ) (-He-0) ko (o) o

—00
-

o3 (z=r})

T ’ / / 2 . ’

= [[o@.v) w@ .y~ ) o — 7)) exp (~52kor,) da'dy
—oo
x0

= [[K@y-yiz)e@.y) da'dy, (F-3)
129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where K(z,y;z’') is the measurement kernel given as

K(@yid) = w(z ) o> (o~ (@', y) exp (~j2kor (2, 3) (F.4)

and

o) = [T o) pClu-2) du. (F.5)
c —o € c
The expression for the range compressed signal is now in the form of a Fredholm integral
equation of the first kind with a nonseparable kernel. The inversion method described in
Appendix E can be applied to this case as explained in the following.

1. First, we wish to decompose this last integral into a set of integral equations,
each along a basis component of the z-range space of the measurement kernel. For this
purpose, we first find a basis for this subspace and then project the measurements onto

each basis component. Let this basis be composed of vectors {¥i(z)}/_,. Then form
o
[(z,2) = //K(a:, v 1') K*(z,y;2') d2'dy’ . (F.6)

The basis functions {v;(z)}/_, can be obtained by eigendecomposition of the discrete
version of ['(z,z). This is a spectral representation of the measurement kernel. The
number of basis functions / is determined by an energy constraint on the singular values

of the discrete form of I'(z, z). For instance, in our simulations we choose I to keep 99%

of the energy.
2. Project onto the subspace spanned by {vi(z)}..,, i.e.,

i) = [ i@ sz do (F.7)

K@) = [ () K@ ya) de (F8)

and obtain the decomposition into projected measurements as

fily) = // Ki(y—v'.2")g(z',y') da’ dy’ . (F.9)
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3. Represent the integral in multichannel convolution form by first approximating

the kernel by

Ji
Ki(y.r') = Z '\ijuij(y)vi.j(xl) .

=1

Let {gm(z')}M_, be an orthonormal basis. Then

'U,'j(l‘l) = Z a,-_,-mqm(z')
m=1

Then,
iy = 2 L. ZA,,u',y ¥)agm / (ol V) by
~|m(y-!l’)
M e
~ Y / Zim(y — ¥)Pm(y’) 4V,
m=1Y"®
where

gy
Zm(y) = D Ajii(y)eim
i=1

Pm(y')

[ an(@g(@.v) o’

(F.10)

(F.11)

(F.12)

(F.13)

(F.14)

4. Solve the multichannel deconvolution problem to obtain the estimate of the pro-

jections as
Pm(y) = Z/ hmi(y — y) fi(y)dy

Appendix E explains how to obtain deconvolution filters.

5. Back-project to obtain an estimate of the reflectivity.

Z Pm (¥ )gm(z’)
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