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ABSTRACT

A theoretical study of the fields inside a homogeneous, lossy
cylinder prdduced by a helix that surrounds the cylinder is presented.
The helix is modelled by a single ring of magnetic current surrounding
the cylinder. The ring 1is converted to an equivalent system of
cylinders via the Fourier transform so that the boundary-value problem
may be solved. Finally, the inverse Fourier transform is baken
numerically.

The cylinder is used as a first approximation to the human body so
that heating patterns within the body due to electromagnetic wave
absorption may be predicted. This study could lead to more effective
hyperthermia applicators for regional body heating in the frequency'

range of 10 to 100 MHz.
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1. INTRODUCTION

Hyperthermia, the heating of body tissues to above normal
temperatures, has been shown to be effective in treating certain
cancerous tumors either when used alone or in combination with radiation
or drugs [1]. Applicators covering almost the entire frequency range
from ultrasound to microwaves are currently being designed and
implemented for trial use in the laboratory or clinic. The research
covered by this report concerns the design of a radio frequency (10 to
100 MHz) applicator to produce regional heating.

A desirable applicator would focus the energy to produce relatively
high temperatures at the core of the body and would be simple to operate
and control. A helix surrounding the body, as in Figure 1, operating in
the RF range meets nearly all of these requirements. The wavenumber of
biological ¢tissue in the RF frequency range allows reasonable
penitration [2]; however, because of the long wavelength at these
frequencies little focusing of the electromagnetic energy 1is possible.
At higher frequencies, greater focusing can be achieved but biological
tissue becomes very lossy at these frequencies reducing penitration.
Also the interface between the applicator and the skin becomes critical
at high frequencies to reduce the reflection of energy back to the
source., At ultrasonic frequencies a pressure wave is used to produce
heating. Here, again, the applicator/skin interface is critical and air
pockets in the body block the ultrasonic-wave reducing penitration.

The applicator design studied here has the correct E-field

orientatiqn for deep heating. The electric field is always parallel to
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Figure 1. Applicator under study and coordinate system



the muscle/fat interfaces within the body so reflections between tissue
layers and between the skin and the applicator are minimized. Thus the
applicator/skin interface is less critical than with other types of
applicators.

Previous authors have studied the problem of fields inside a
cylinder of biological tissue. The cylinder is chosen because of its
simple shape and because it is a good model of certain parts of the body
to analyze regional heating. Wu and Tsal calculated the fields inside
an arbitrarily cross sectioned cylinder due to a plane wave incident by
forming an integral equation and using moment method techniques to solve
for the fields [3]. Morita and Andersen studied the fields in a
homogeneous cylinder produced by electric and magnetic line sources by
forming exact solutions~using a series of Hankel functions [4].

Here the field patterns of a helix surrounding a homogenous cylinder
are studied by forming an exact integral solution for a model of the
source and inverting the integral numerically. The model of the source
is constructed by noting that the dual to a small electric current loop
is a magnetic dipole [5]. Thus, the series of electric current loops
that make up the helix can be thought of as a single filament of
magnetic current. The integral solution is formed by converting the
filamentary ring to an equivalent system of cylinders via the Fourier
transform, solving the transformed boundary value problem, and applying
the inverse Fourier transform.

A very similar derivation which studied surface waves on dielectric
eylinders was done in 1959 by J.W. Duncan [6]. He formulated the

integral solution for the filelds external to the cylinder and evaluated



it as a contour integral by applying Cauchy’s theorem and obtained the
far-zone fields by means of a saddle-point integration. A similar
integral solution is formulated in this thesis for the fields inside the
cylinaer and is solved numerically using the Fast Fourier Transform

algorithm.



2. MATHEMATICAL FORMULATION

The problem to be investigated is illustrated in Figure 1. An
infinitely long dielectric c¢ylinder is oriented so that its axis
corresponds to the 2z axis of a cjlindrical coordinate system (p,9,Z).
The cylinder is lossy with complex wave number k,, and is surrounded by
infinite free space with wave number k =V€QE% The radius of the
cylinder 1is a. Surrounding the cylinder is a filamentary ring of
magnetic current of radius b with no z or ¢ variation. Mathematically

this is represented using Dirac delta functions as

%=38(p-b)8(z)  VOLTS?/METER (2.1)

with $ representing a unit vector in the ¢ direction. The source is of

unit magnitude such that

[ dda=1

The time dependence edot 14 impliecit.
The electromagnetic fields inside the cylinder represent solutions
to Maxwell’s equations subject to the boundary conditions of the

problem. In differential form, Maxwell s equations are

VxE=jwuH-i
— — (2.2)
VxH==jweE

Taking the curl of the second equation and substituting in the first and

the filamentary source of (2.1) results in

-VxVx Ho+w? yelp=-juwes (p-b)s(z) (2-3)



Since the source has only a ¢ component, only the H¢, Ep, EZ field
components will be nonzero. Moreover, since the source is independent
of ¢, these field components »will also be ¢ independent. This
represents a field transverse magnetic with respeet to the 2z axis.
Expanding (2.3) in ecylindrical coordinates results in a differential

equation relating H, to the source.

¢

chp:

=32 Ho _ 18H¢ (

327 "5 5o Jjwes(p=b)s(z) (2.4)

k? Ho-==r
Now define the Fourier transform of H¢ in the z direction as

h()€)=L" Ho(p,z)e ™ 52dz (2.5a)

and the inverse as
H¢(D)Z)='2]"‘[m (D)E)e‘lgzdz (2.5b)

Equation (2.4) can be reduced to a nonhomogeneous, ordinary differential
equation by taking the Fourier transform of both sides iIn the =z

direction. The result is

(SR

- 3h (1

3%h
= -k 2+
} 90 k E ) 3

- =jwed(o=b) (2.6)

Note that the z dependence has been removed and the ring has been
converted to an equivalent system of cylinders.

The problem is now one of solving (2.6) subject to the transformed
boundary conditions and taking the inverse transform defined by Equation
(2.5b). Equation (2.6) will be solved in the next section; however,

because the inverse transform is analytically very difficult, the FFT



numerical algorithm is used to invert the solution to (2.6). This
computation is discussed in Section 4. The remaining field components,
Ep and E,, are found'using Maxwell’s equations, which in eylindrical

coordinates for this problem are
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3. SOLUTION TO THE BOUNDARY VALUE PROBLEM

The solution to Equation (2.6) subject to the transformed boundary
conditions 1s considered here. First note that for p#b Equation (2.6)

reduces to

o

82

3h (1 a9n
ap?

3_ =0 (3.1)

1 2
: K2+£2)h-

since the source term is zero for p#b. When Equation (2.6) is

integrated over the region b-8p to b+dp , the result is
b+8p
h_2h =] 3.2
./hap T Jwe, (3.2)
b-3dp
In the limit as §p -+ 0, since h is continuous, both the integral term and

first term in the brackets go to zero. The result is the first boundary

condition

Q

_8111 __h.l =jue, (3.3)
p=b-38p p=b+3p

Two more boundary condtions are found by noting that H¢ is continuous at

p=a and at p=b; h(p,£) must also be continuous at these points.

h(a+sp,&)=h(a-8p,&) (3.4)

h(b+dp,&)=h(b-8p,8) (3.5)

The fourth and final boundary condition is found by foreing E, to be
continuous at p=a. Using Equation (2.7) to represent Ep and equating

for p just inside and just outside the cylinder yield

3Ho _ (8He . 1
) -e (H24 Lyg)

0=a-38p p=a+dp



When the Fourier transform of both sides is taken according to (2.5a),
the result is

3h 3h h -
3 € 355 +(l-€r)5' =0 (3.6)

p=a=5p p=a+dp p=a
where ef is the relative dielectric constant of the cylinder.

The next step is to write general solutions to (3.1) for each of the
threé regions: inside the cylinder (0<{p<a), between the cylinder and the
current loop (a<p<b), and outside the loop (p>b). The unknown
constants, multiplying the solutions in each region, are determined by
enforeing the boundary conditions (3.3) thru (3.6) and forecing the
fields to be finite at p=0 and p=zc,

The solution to Equation (3.1) has two general forms, a
standing-wave solution and a traveling-wave solution given respectively
by

h(p;€)=Ad, (Bo)+BN, (Bp) (3.7a)

h(p,&)=CH2(80)+DH (8o) (3.7b)

where B?=k*-g? , J,(Bp) and N (Bp) are Bessel functions of the first and
second kind respectively, I{f%gp) and H®(Bp) are Hankel functions of
the first and second kind.

First consider the region (0<{p<a). Here use the standing-wave
solution (3.7a). Note that in order for h(p,f) to remain finite at p=0

the coefficient B must be zero since Nl(Bp) is infinite at p=0.

h(p,€)=AJ, (8 o) (3.8)

for 0<p<a and B, *=k *-£°
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In the region p>b, use the travelling-wave solution and force the fields

to be finite at p=cw.

h(p,&)=DH N8 o) (3.9)
for p>b and B %=k %-£2
Finally in the region a<p<b, both terms of the standing-wave solution

must be used with two more unknown constants.

1(016)=CJ, (8,0)+EN (8,p) (3.10)

for a<p<b and B°2=k02-52

The unknown constants A,C,D,E in Equations (3.8) thru (3.10) are found
by applying the boundary conditions (3.3) thru (3.6). This results in

four equations in four unknowns.

DH, (8, b)-CJ, (8, b)-EN, (8, b)=0
CJ, (B,a)+EN (B a)-Ad, (B, a)=0
Alg ad (8,2)-d, (B a)]+C[J, (8 a) -8 ad, (8 a)] +EIN (8 a)
(3.11)
~e .8, al, (8,2)]=0
~D[8, bH, {8, b)~H *{8, b)]+C[8, b, (8, b)=-J, (8 b)]+E[B, BN (8, b)
-N, (8,b) ]=jue, b
Since only the field distribution inside the c¢ylinder is desired for
this problem, only the unknown coefficient A of Equation (3.8) must be
found. Some of the details of this lengthy calculation can be found in

Appendix A. The result after substituting A into (3.8) is

e, B, (3, b}, (

)= (3.12)
SlaJO(Bla)Hl“KBOa)—BOaJ

h(p)

BA)|

8,2)
(3,a)K,"13a)

1
i
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Finally, H¢(p,z) is found by taking the inverse Fourier transform of

(3.12). The result is

Ho(p)z)= Jwegb f HflKBob)J1(Blp)ngzaz
2ra ) 53, (G ORME D5 B ORMEa)  (3.13)

for o<p<a
with 802=k 02-5 2

Bf=kf-€2

The numerical solution of Equation (3.13) is the subject of the next

section.
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4. NUMERICAL SOLUTION

The solution of (3.13) for the field component H¢ and the field

components E and Ez is the subject of this section. The FORTRAN IV

p
listing of the computer program written to solve (3.13) is given in
Apﬁendix B. The complex function "CF" is used to compute h(p,E) of
Equation (3.12) at discrete values of £. A plot of the function h(p,f)
vs. & for a sample configuration at a certain value of p is given in
Figure 2. Taking the inverse transform of this curve will give H¢.
Note that for values of ¢ above approximately 0.6 the calculation of
h(p,£) becomes unstable. It can be shown that in the limit for large £
h(p,g) goes to zero. The unstability occurs because both the numerator
and dencminator of (3.12) go to zero fairly rapidly and the limit of the
computer”’s accuracy is quickly reached. Thus, to circumvent this
problem, the function h{(p,f) was filtered at E:O.é S0 that no numerical
noise for £>0.6 would affect the inverse transform.

Prior to taking the inverse Fourier transform, additional zeros were
placed on the ends of the array containing values of h(p,f) to increase
resolution in the space domain [9]. The number of zeros added and the
total FFT array size are determined by the input variables "MULT" and
"M." Taking the inverse transform gives the field component H¢ along a
line parallel ¢to the z axis for z values between the limits set by the
input vériable "PU." The inverse transform was taken using the complex

International Math Science Library Fast Fourier Transform routine called

"FFT2C."
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The remaining field components E_ and EZ may be found by applying

p
Equation (2.7) directly to the integrand of (3.11) and taking the
inverse Fourier transform via the FFT algorithm. However, due to the
highly peaked nature of these field components in the transform domain,
the numerical inverse transform is difficult. It turns out that
applying finite difference techniques to the inverse transform of h(p,Z)
yields more accurate and computationally efficient results, The
four-point difference technique described in [8] was used to approximate

the derivative of H¢ with respect to p for E, and z for Ep. The four

point approximation is given by

——”éi” = 2 {-2f(x,)-3F(x, )+6F(x,)-F(x, )} (4.1)

Several values of Ap and Az were used in (U4.1) to caleculate E. and Ey.

b
It was found that these field components were remarkably insensitive to
these parameters. The results were plotted on Tektronix plotters using

GCS/Future plotting software.
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5. NUMERICAL RESULTS

Numerical results using the computer program listed in Appendix B
are given in this section. Two different dielectric cylinders are
studied at 40.68 MHz. The first has a wavenumber corresponding to fat
which has a relatively low water content and thus a low loss tangent
(e'=14.6, €"=15.0), and a second with a wavenumber corresponding to
muscle tissue that has a much higher water content and a loss tangent
approximately 20 times that of 'fat (g'=97.3, ¢" =306.36) [2]. . The
lossless case of a simple magnetic current ring in free space is also
given for reference. Results for the lossless case were obtained by
using a cylinder with the free-space wavenumber. Plots of each field
component versus p, the radial distance, at z=0 and at z=5 centimeters
for each of the three cases are given in Figures 3 thru 11 (pages 18
thru 26). The field components Hp and EZ are symmetric about z=0, while
Ep exhibits a 180 degree phase reversal. A search of the published
literature has yielded no similar studies for comparison with these
results.

The power dissipated in a lossy dielectric that produces tissue
heating in hyperthermia is a function of the total electric field
squared and the conductivity of the medium [1]. The power dissipated is

given by

P=iso | E 12 W/em? (5.1)

TOTAL

where ¢ is the conductivity. Plots of the power dissipated inside the
two uniform cylinders studied here with the appropriate o taken from [2]

are given in Figures 12 and 13 (pages 27 and 28). Note that the maximum
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heating occurs at the surface and is fairly constant in the central
region of the cylinder. If one compares the figures for z=0 and z=5, it
is found that above and below the helix the fields taper off quickly so
some focusing is achieved. This is a desirable heating pattern for

regional hyperthermia though surface cooling may be required.
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6. CONCLUSION

The results of a theoretical and numerical study of the fields
inside a homogeneous, 1lossy cylinder due to a ecircular helix are
presented. The circular helix in this configuration 1is a promising
applicator for short wave hypérthermia due to its reasonably good
heating pattern and simple design. The helix was modeled as a filament
of magnetic current, .and an exact integral solution for the problem of a
filamentary current around an infinite cylinder was formulated. The
integral solution was inverted numerically, and the internal field
distributions for the cases of a eylinder with a  wavenumber
corresponding to fat, muscle and free space, i.e., the problem of a ring
in homogeneous free space, were presented. While surface heating was
high, plots of the power dissipated, which is determined by the electric
field, show that a relatively uniform heating pattern deep inside the
cylinder is attainable with this type of RF applicator. Other
configurations for use in this frequency range, currently in cliniecal
tests, exhibit less desirable electric field distributions.

Further theoretical studies include the determination of the optimum
frequency and dimensions of the helix and the problem of‘multilayéred
cylinders to more accurately predict the heating patterns within the
human body. Experimental work should alsc be done to verify the results

of this study.
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APPENDIX A - SOLUTION FOR THE CONSTANT A OF EQUATION 3.8

In order to solve for the constant A of Equation (3.8) write Equation

(3.9) in matrix form.

r— - 1 - -
o A, b, b4, | [ a 0
TR by By D - ° (A.1)
A ) A A C o)
31 33 3
A, o b, A, E ] Juwegb
where

A, =H, *(8,b) A, ==J; (8 b) A, =-N (8;b)

13 0 i
A21=_J1(Bla) A23=J1(Boa) A2h= Nl(soa)
A31 =81a‘]o(81a)"]1 (Bxa) Aaa =IJ1 (Boa)'ere‘o ahJo (Boa)
8, =N, (B,a)- B aN (B,a) 4, =H (8 b)-B bH *(8;b)
1.\.43 =B0 bJo (Bob)"“]l (Bo b) A% =80 bNo (Bo b)-Nl (Bob)

Using Cramer's rule to solve for A

A= det B (A.2)
det A

where : is the coefficient matrix of Equation (A.l) and B is the matrix
formed by replacing the first column of A by the right-hand side of (A.1).
Solving (A.2)

det §='j“°50 bla, 8, 8,728,584, 8, !

multiplying this out, canceling similar terms and using the Wronskian of

9y (g,a) and NO(BOa) result in

det B= LT?;—(ﬂf—:oe:rlel(Bob) (A.3)
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The denominator of (A.2) is a longer yet no more difficult calculation.
The procedure is as follows
det A==0, A, A A, =A A A, 8,

T Ay B4 8358+ 8y 8585, 4y,

Thy 8y 83 Byt Aal Ly 85 84,

T80, 8,5 8,,-8, 8,58, 8,

Multiplying this out, canceling similar terms and using the Wronskians
for HO(I{BOb) and JO(BOb) and for HO(I{BOb) and N, (Bob) results in

= 2e.B.a 2epB.3
de a=- 2580 3 (g a), g a)+ Z5rBa% g (g a)H N8, a) (4.4)

Substituting (A.3) and (A.4) into (A.2)

B} jwe, bH, LB, b)
Byad, (B,a)H, (B a)-8,ad; (B, a)H Mg a)

A
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APPENDIX B- FORTRAN IV LISTING OF COMPUTER PROGRAM

PROGRAM CYLDER2 (INPUT,OUTPUT,TAPE6=OUTPUT,TAPE5=INPUT)

THIS PROGRAM COMPUTES THE FIELDS INSIDE AN INFINITE
CYLINDER DUE TO A LOOP OF MAGNETIC CURRENT AROUND THE
CYLINDER

K1 = WAVE NUMBER FOR CYLINDER

KO = FREE SPACE WAVE NUMBER

N = NUMBER OF POINTS IN FFT ARRAY
M = NUMBER OF STAGES IN FFT

PSI = TRANSFORM DOMAIN FREQUENCY VARIABLE

PU = UPPER LIMIT OF Z

MULT = REDUCES SAMPLING INTERVAL IN TRANSFORM DOMAIN
(A INTEGER NUMBER ROUGHLY BETWEEN 1 AND 6)

= NUMBER OF SAMPLES IN RANGE OF Z

= RADIUS AT WHICH H SUB PHI IS CALCULATED

. RADIUS OF CILINDER

B = RADIUS OF MAGNETIC LOOP, NOTE B>A MUST BE TRUE

CONST = J¥*W¥*B/(TWOPI*A)

CONST2 = J/WRE

ZZ = H SUB PHI IN SPACIAL DOMAIN

BO = SQRT(KO##*2-pSI*#2)

B1 = SQRT(K1#%#2_pST*##2)

LIBRARTES USED ARE IMSL, AMOSLIB, GCS/FUTURE

NP
RH
A

I n oM

Hou

EXTERNAL CF

COMPLEX K1, CF, CONST, ¥(1025), ZZ(4,1027), CONST2, TEMP

REAL KO, MULT
DIMENSION X(1024), IWK(11)
COMMON /CONSTS/ &, B, KO, K1
PI=4 . *ATAN(1.)

TWOPI=2,#PI

K0=0.00568

NR=1

WRITE (6,15)

FORMAT (/" ENTER K1")

READ (5,%) RK1, XK1

K1=CMPLX(RK1,XK1)

WRITE (6,20) ‘

FORMAT(/" ENTER UPPER LIMIT OF Z, MULTIPLIER, AND RHO")
READ (5,%) PU, MULT, RHO

WRITE(6,22)

FORMAT(/" ENTER RADIUS OF CYLINDER, RADIUS OF LOOP AND M")

32
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32

33

25

40

33

READ (5,%) A,B,M

WRITE (6,23)

FORMAT(/" WHICH GRAPHS? H-PHI, E-Z, E-RHO; 1=YES")
READ (5,%*) IFLAG1, IFLAG2, IFLAG3

IF (IFLAG2.NE.1) GO TO 33

WRITE(6,32) :

FORMAT(/" ENTER DELTA-RHO FOR THE CALCULATION OF E-Z")
READ(5,%*) DRHO

CONTINUE

N=2##M

XN=FLOAT(N)

NH=N/2

NH1=NH+1
CONST=CMPLX(0.,2.26E-5%B/A)
CONST2=CMPLX(0.,1.)/ (K1¥K1#0.31133)
RHO1=RHO

CALL USTART

DO 100 I=1,4

DO 25 J=1,NH1
PSI=FLOAT(J=-1)/(2.%PU¥MULT*MULT)
IF (PSI.LT.0.6) Y(J)=CONST*CF(RHO,PSI)
IF (PSI.GE.0.6) Y(J)=CMPLX(0.,0.)
IF (J.GT.NH) GO TO 25
JJ=N+2-J
¥(JJ3)=¥(J)

CONTINUE

COMPUTE INVERSE FOURIER TRANSFORM OF Y ARRAY
FFT2C IS AN IMSL ROUTINE THAT COMPUTES DISCRETE
FOURIER TRANSFORMS

CALL FFT2C(Y,M,IWK)

DO 40 J=1,NH
JJd=J+NH
22(1,J)=Y(JJ)/ (2. *PURMULT*MULT)
2Z(I1,JJ)=Y(J)/ (2. #PU#MULT*MULT)
CONTINUE
ZZ(I,N+1)=2Z(I,N)
ZZ(I,N+2)=ZZ(I,N)
Z2Z(I,N+3)=2Z(I,N)

COMPUTE, PLOT H-PHI, E-Z, OR E-R ACCORDING TO IFLAGS
DETERMINE NUMBEER OF POINTS IN RANGE OF Z, FILL ARRAY
WITH Z VALUES FOR PLOTTING

NP=IFIX(XN/(2.*MULT*MULT))
NP2=2%NP
DO 43 J=1,NP2



43

45

50

55

57

60

100

105

110
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X(J)=FLOAT(J-1-NP)#*2 *PU#MULT*MULT /XN
CONTINUE
H-PHI FIRST

IF (IFLAG1.NE.1) GO TO 50
DO 45 J=1,NP2
JJ=NH-NP+J
Y(J)=22(1,JJ)
CONTINUE
CALL PLOTIT(X,Y,NP2,"Z;","H SUB PHI;")
IFLAG1=0

E-R NEXT, USING FINITE DIFFERENCE TO APPROX DERIVATIVE
W.R.T. Z; MULTIPLY BY J/(W®E)

IF (IFLAG3.NE.1) GO TO 60
DO 55 J=1,N
TEMP=-2.%22(I,J)=3.%2Z(I,J+1)+6.%2Z(I,J+2)-22(T,J+3)
Y (J+1) =TEMP*CONST2%XN/ ( 12, *PUSMULT*MULT)
CONTINUE
Y(1)=¥(2)
DO 57 J=1,NP2
JJ=NH-NP+J
Y(J)=Y(JJ)
CONTINUE
CALL PLOTIT(X,Y,NP2,"Z;","E SUB R;")
IFLAG3=0

LOOP 4 TIMES FOR THE CALCULATION OF E-Z
THE DERIV WILL BE APPROXIMATED LATER

IF(IFLAG2.NE.1) GO TO 200

RHO=RHO+DRHO

IF(I.EQ.?) RHO=RHO-3.¥*DRHO
CONTINUE

USE FINITE DIFFERENCE TO APPROX DERIVATIVE W.R.T. RHO
ADD TO H-PHI/RHO AND MULTIPLY BY -J/(WXE)

DO 105 J=1,N
TEMP=-2.#27Z(4,J)=3.%#22(1,J)+6.%22(2,J)~22(3,J)
TEMP=TEMP/ (6. *DRHO)

Y(J+1)=-CONST2% (TEMP+2Z(1,J+1)/RHO1)

CONTINUE

Y(1)=¥(2)

DO 110 J=1,NP2
JJ=NH-NP+J
Y(J)=Y(JJ)

CONTINUE

CALL PLOTIT(X,Y,NP2,"Z;","E SUB Z;")
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CALL UEND
STOP
END

“PLOTIT” PLOTS THE XN POINTS IN Y ARRAY VS. X ARRAY
THE CONTENTS OF “XLAB” AND “YLAB® ARE THE LABELS ON THE
X AND Y AXES

GCSTEKT/FUTURE ROUTINES ARE USED

SUBROUTINE PLOTIT(X,Y,N,XLAB,YLAB)
DIMENSION X(1024), RY(1024), XY (1024)
INTEGER XLAB,YLAB
COMPLEX Y(1024)
XN=FLOAT(N)
DO 10 I=1,N :
RY(I)=CABS(Y(I))
XY (I)=ATAN2(AIMAG(Y(I)),REAL(Y(I)))
XY(I)=XY(I)*360./6.28

_CONTINUE

CALL UERASE

CALL URESET

CALL UDAREA(0.,7.49,0.,5.71)
CALL USET("NOORIGIN")

_ CALL USET("XBOTH")

CALL USET("YBOTH")

CALL UPSET("XLABEL",XLAB)
CALL UPSET("YLABEL",YLAB)
CALL UPLOT1(X,RY,XN)
CALL UPAUSE

CALL UERASE

CALL URESET

CALL UDAREA(0.,7.49,0.,5.71)
CAL). USET("NOORIGIN")
CALL UPLOT1(X,XY,XN)

CALL UPAUSE

RETURN

END

THIS FUNCTION COMPUTES H SUB PHI IN THE TRANSFORM DOMAIN.
TAKING THE FOURIER TRANSFORM OF THIS FUNCTION AND
MULTIPLING BY A FEW CONSTANTS WILL GIVE H SUB PHI
AMOSLIB ROUTINES ARE USED

COMPLEX FUNCTION CF(RHO,PSI)
COMMON /CONSTS/ A, B, KO, K1
REAL KO



COMPLEX Z, J, K1, BO, B1, JOB1A, J1B1A, H1BOA, HOBOA,

H1BOB, J1B1R, CJO, CJ1, CY0, CY1, CHO, CH1, T1
J=CMPLX(0.,1.)
T1=K 1%K 1-PSI#*PSI
T2=SQRT (CABS(T1)) .
T3=0.5*ATAN2(AIMAG(T1) ,REAL(T1))
B1=CMPLX(T2%COS(T3) ,T2#SIN(T3))
T0=KO*KO0-PSI*PST
IF(TO.LT.0.) BO=J#SQRT(-TO)
IF(T0.GE.0.) BO=SQRT(TO)
Z=B1%A
CALL CJO1BS(Z,JOB14,J1B1A)
Z=BO%*A
CALL CJYHBS(Z,1,CJ0,CJ1,CY0,CY1,CHO,CH1)
HOBOA=CJ0+J*CY0
H1BOA=CJ 1+J%CY 1
Z=BO*B
CcALL cJysBs(z,1,cJo,CcJ1,CY0,CY1,CHO,CH1)
H1BOB=CJ 1+J#CY 1
Z=B1#RHO
CALL CJO1BS(Z,CJ0,J1B1R)
CF=H1BOB*J1B1R/ (B1*JOB1A*H1BOA-BO*J1B1A*HOBOA)
RETURN
END
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